

euspen’s 16th International Conference &
Exhibition, Nottingham, UK, May 2016

www.euspen.eu

Enhancement of the Mechatronic Development Process with Software in the loop
Simulation

Karin Fåhraeus, Jonas Walther

Mycronic AB, R&D Mechatronics, Sweden

karin.fahraeus@mycronic.com, jonas.walther@mycronic.com

Abstract
This paper describes a concept for working with a model based approach in the development of embedded mechatronic control
systems. The focus has been to find an independent method with low overhead and low maintenance that enables modeling and
simulation in multiple phases during the development cycle. The work started as a Master Thesis [1] and the concept of a software
in the loop simulation has been implemented and evaluated as a proof-of-concept in a pick-and-place system.

Software in the loop, Mechatronics, Model-based development, embedded system, simulation

1. Introduction

Model-based development (MBD) is very common in
embedded system projects for control applications and refers
to control- and plant models and simulations [6]. The
methodology of model based development usually starts with
Model in the loop (MIL), then Software in the loop (SIL),
Processor in the loop (PIL) and finally Hardware in the loop
(HIL) [2,3,4]. Today there are a lot of different tools for
implementing MBD, but they also have some drawbacks. It
usually requires a different software development environment
than the existing one that may introduce a high learning
threshold. They can be target specific meaning that they only
support some processors and one becomes dependent of that
software development environment. Sometimes extra
hardware is also needed.

A PIL simulation is implemented for the embedded system on
a pick and place machine, where the control system code runs
on the actual target processor and the plant model is
represented by mathematical equations in a C-function. The
plant model refers to the dynamics of the system and is
determined by the physical properties of the system. This
simulation mode is dependent on target hardware, it is hard to
debug and it takes a long time to compile and download the
code to the target.

For software in the loop simulations, the plant is modeled but
the control is executed in a low level language, such as C,
where the simulation runs on a desktop computer [2]. An
analysis of how to implement an independent SIL solution has
been conducted and the investigation resulted in a prototype
SIL simulator. This SIL solution has been developed as a proof
of concept for one of the axis in a pick and place machine. The
aim is to examine the advantages and opportunities this
solution brings to the development process of an embedded
system.

2. SIL solution as proof of concept

The development cycle of a mechatronic system for a pick and
place machine has been evaluated and currently, Model in the
loop and Processor in the loop are implemented. To enhance

the development process a SIL solution prototype has been
developed.

2.1 MIL and PIL

 Model in the loop is used in the beginning of the
development, where both the control system and the plant are
modeled in Simulink. At Mycronic, a lot of the code is reused
during development where in that case, MIL can be excessive
to implement. The embedded code can also be executed and
tested in a PIL simulation that has made the testing of the code
partly independent of the hardware and given a chance to test
the code before running it on the real machine.

2.2 Implementation of SIL

The control systems code running on the embedded system
is modified so that it can be compiled with a gcc compiler and is
executed on a desktop computer. This is accomplished by
identifying target specific code and in some cases replacing the
code with corresponding functionalities that are available on a
desktop computer. In other cases the functionalities are
simulated. The interface to the plant model is implemented
with TCP socket communication. The plant model is
implemented as a mathematical representation in a C-function
or in Simulink. However, the plant can easily be replaced by a
model in another program giving a modular and flexible
solution. The overview of the SIL solution compared to the real
machine can be seen in Figure 1. Here the SIL environment can
be seen with the control software running on a desktop
computer, sending the control signal of current to the plant
model which will return the calculated encoder position
through TCP socket communication. For the real system the
system software is running on a Linux computer
communicating with the embedded system through a CAN
network. The embedded system controls the real plant through
hardware IO. In Figure 2 the Simulink part is shown in more
detail with an S-function handling the socket communication
retrieving the control signal and then sending back the
position.

http://www.euspen.eu/
mailto:karin.fahraeus@mycronic.com
mailto:jonas.walther@mycronic.com

Figure 1. The real system compared to the implemented software in
the loop simulation.

Figure 2. The plant model in Simulink with a SIL socket in an S-function
that handles the communication with the control application code.

2.3 Different ways of running the code

The plant model can be switched between variants
depending on the situation. During software functionality
development a fast executable and lightweight model can be
used giving a fast debugging turnaround. During control system
development a more realistic model can be used. When doing
tests and development, there are now 5 different ways of
running the code according to:

1. The MIL simulation implemented in Simulink/
SimMechanics.

2. SIL simulation with the plant model as a
mathematical representation in a C-function.

3. SIL simulation with the plant model in
Simulink/SimMechanics.

4. The PIL simulation with the plant model as a
mathematical representation in a C-function.

5. The real machine or real hardware prototypes.
This gives a high flexibility to select the right tool for different
situations.

3. Result

This SIL environment can be used when developing the code
for the control system and the code can be tested without the
real plant hardware. One of the big advantages with SIL is that
it is not dependent of either electronics or mechanics and it
gives an opportunity to execute and test the code and the
control before it is integrated with the target processor, e.g. in
early design phases. It is also useful in sustaining development
when hardware in not available.

An advantage with using the SIL compared to MIL is that it is
the real code that is running, which makes it closer to reality. It
is common for MBD to auto-generate code from MIL to SIL [3,
4]. This might be good when developing systems from the
beginning, but not as good in incremental development when a
lot of code is reused. It is more efficient to use the existing and
reusable code in a SIL environment.

The SIL provides the possibility to check whether the
controller design is well executed and satisfying. Problems and
errors that might arise can be caught early with the SIL
simulation. The detection and elimination of errors early will
contribute to have the code more thoroughly tested.

Mechatronics is a synergistic combination of mechanical and
electrical engineering, computer science and control

engineering [5]. In designing of a mechatronic system it is very
important to include these interactions and consider their
impact on each other. The SIL simulation includes the
interaction of the control design, mechanical design, electrical
design and software design which is a great advantage.

The SIL simulation contributes with an opening to run other
system software together with simulations of the embedded
system on a desktop computer. This facilitates development of
the system software and enables more complete regression
testing.

The SIL simulation will be useful throughout the whole
development cycle. It enables the use of standard software
development tools like debugger, profiler, code coverage and
test tools. This reduces the dependency on target specific tools
that can be limited or have a high learning threshold. It also
makes it easier to migrate to other target hardware. If the
embedded software is designed for this version of SIL with an
abstraction of the target specific code and an abstraction of
other hardware accesses the implementation and maintenance
requires a relatively small amount of work.

4. Conclusion and future work

A SIL simulation concept has been developed and evaluated
as an enhancement to the development process for complex
mechatronic control systems. A benefit from using MBD and SIL
is that the systems behavior can be predicted and the
interaction with mechanical, control, electrical and software
design can be evaluated early. The concept will improve the
work flow and quality in all phases of the development cycle
with low overhead work effort once it is up and running. It
enables the use of open source software tools and it is flexible
so that it can be used regardless of target system. Another
advantage is that it is independent of a specific software
development environment and therefor also suitable for
smaller companies and organizations. With this approach of
using the new SIL simulation the code will be more thoroughly
tested and errors can be found in the beginning of
development. The SIL simulation contributes with faster
development.

The next ongoing step is to implement the SIL simulation in
full scale for a complete system. As the implementation is
today, the SIL does not include any of the target specifics, for
example numerical properties or timing. The possibility to
include target specifics in the SIL simulation will be examined in
the next step. There is an ongoing work to implement the same
concept of SIL simulation for Mycronic’s high precision
lithographic mask writers. An evaluation of the SIL simulation
concept used in a development project needs to be executed.

References
[1] Fåhraeus, K 2015 Enhancement of the Mechatronic Development

Process with Software in the loop Simulation, An embedded
control case study

[2] Bouissou, O Chapoutotm A 2012 An Operational Semantics for
Simulink’s Simulation Engine Proceedings of the 13th ACM
SIGPLAN/SIGBED International Conference on Languages,
Compilers, Tools and Theory for Embedded Systems (LCTES 2012)

[3] Shokry, H Hinchey, M 2009 Model-based verification of embedded
software Computer 42

[4] Jaikamal, V 2009 Model-based ECU development – An integrated
MiL-SiL-HiL Approach SAE Technical Paper

[5] Fotsom, A.B Wasgint, R Rettberg, A 2012 State of the Art for
Mechatronic Design Concepts International Conference on
Mechatronics and Embedded Systems and Applications (MESA)

[6] Bhatt, D Hall, B Dajani-Brown, S Hickman, S Paulitsch, M 2005
Model-based development and the implications to design
assurance and certification Digital Avionics Systems Conference
(DASC)

