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Abstract 
 
Surface texture parameters are important indicators for understanding and controlling manufacturing processes.  Deriving these 
parameters is however beset by ambiguities and uncertainties. The inclusion of confidence bands should provide valuable 
information on the reliability of the derived surface parameters. Existing methodologies of uncertainty modelling assume non-
random interpolation functions, which do not adequately allow for the inclusion of interpolation uncertainties. This paper presents 
a new approach based on Gaussian processes, including a mechanism for the derivation and inclusion of such interpolation-based 
uncertainties when calculating surface texture parameters.  The interpolation-based uncertainties are assumed to be independent 
of measurement uncertainties and as such, they can be independently modelled and propagated onto the derived parameters.  When 
tested using real machining surface data, validation results show that the newly proposed technique has the advantage over the ISO-
based approach of systematically characterising interpolation-based uncertainties in the form of confidence bands in the estimated 
profile parameters. 
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1. Introduction 

Surface texture parameters are important functionality 
indicators of manufactured components. Their measurements 
and utilisation provide a number of useful benefits  such as 
helping to understand the manufacturing process, controlling 
the manufacturing process and providing an assessment of the 
quality of the manufactured components [1]. Indeed, surface 
metrology can be viewed as the fingerprint of the whole 
manufacturing process whereby if there is a change in the 
manufacturing process settings, such as personnel and/or tool 
changes, then this will be reflected somewhere on the work-
piece. It is for this reason that surface metrology has been an 
integral part of components manufacturing. There are two 
groups of surface texture parameters: the profile parameters, 
which have been standardised according to the ISO 4287 [2] and 
the areal parameters, which is standardised in the ISO 25178 [3]. 
These ISO documents define a comprehensive list of important 
surface metrology parameters as well as provide procedures and 
formulas for calculating these parameters. The process of 
calculating the parameters in practice involves making 
assumptions which makes this process inherently uncertain. For 
example, definitions of many of the parameters (such as the 
arithmetic mean deviation - 𝑅𝑎) involve the use of mathematical 
integration  which implicitly assumes  that the surface from 
which parameters are to be derived is continuous. Usually 
however, the surface data is recorded at discrete intervals and it 

is typical to fit a continuous surface to the surfaces after which 
some form of analytical or numerical integration method is used 
to calculate the parameters [4]. For example, the widely used 𝑅𝑎 
parameter is given by the following formula: 

𝑅𝑎 =
1

𝑙
∫ |𝑧(𝑥)|

𝑙

0

  

where 𝑙 is the sampling length and 𝑧(𝑥) is the height at location 
𝑥. 
   There exists a plethora of approaches that can be used for 
calculating these parameters. A common approach proposed in 
[4] involves using cubic splines for the interpolation problem. 
The advantage of using the cubic spline interpolant is that it 
facilitates analytically calculating the integral such as the one 
defined in Equation (1).  One major drawback of this approach is 
that such a spline interpolation approach does not adequately 
account for the fact that the values between interpolated points 
are not observed directly. In other words, existing 
methodologies do not allow for characterising the uncertainties 
because the data is only observed at discrete points. The method 
of constant uncertainty interval over the interpolating formula 
was proposed in [5]. In this approach, data points on the surface 
are assumed to be bounded by a constant uncertainty interval. 
A formula based on the Guideline for uncertainty propagation 
(GUM) [6] is then utilised to calculate and produce and 
uncertainty distribution in the surface profile parameter values. 
The use of uncertainty intervals in the interpolation function can 
be useful for understanding the distribution of the parameter 
uncertainties and can provide an explanation as to why there are 
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sometimes ambiguities in the performance of the manufactured 
components even though the same profile parameter values 
were observed [6]. However, using constant bounds as 
uncertainty interval does not adequately and systematically 
reflect the data distribution. Indeed, one would expect that the 
locations where data are observed should include lower 
uncertainties than the locations where data are not observed. 
Statistical interpolation techniques provide a means of 
systematically including such types of uncertainty intervals. This 
paper proposes to use an interpolation approach based on the 
Gaussian process regression approach. Gaussian processes have 
been extensively utilised for characterising uncertainties in 
machine learning [7] and geostatistics [8]. Gaussian process 
regression, otherwise known as kriging, provides a powerful 
framework for interpolation and for determining interpolation 
uncertainties. This approach also allows for including 
uncertainties due to other errors (such as measurement error). 
These uncertainties can then be propagated in calculating the 
surface profile parameter values using the GUM approach as will 
be discussed. To the best of the authors’ knowledge, this is the 
first time such an approach has been applied to calculate surface 
texture parameters. The rest of the paper is organised as 
follows: section 2 introduces the relevant surface metrology 
terms as well as the theoretical foundations of Gaussian process 
regression which will henceforth be known by the geostatistics 
name – Kriging.  The section also briefly discusses the GUM 
uncertainty propagation framework. Section 3 discusses the 
surface metrology datasets used in the paper which include 
synthetic and real data sets.  Section 4 presents the results and 
section 5 concludes the paper and provides suggestions for 
future work.  
 
 

2. Surface Texture Parameters and Kriging      

  2.1. Surface Parameters 
 
   This work will be concerned with calculating the 𝑅𝑎 surface 
profile parameters.  The 𝑅𝑎 parameter is the mostly widely used 
surface profile parameter in academia and industry [1] where it 
is typically utilised to predict work-piece function. It should be 
noted however that the proposed methodology readily extends 
to other surface texture parameters. As already mentioned, 
calculating the parameters typically involve a two-step 
procedure. The first step is to fit a continuous function to the 
measured surface data and the second step involves using some 
form of analytical or numerical scheme to solve the integral 
equations (for example Equation (1)) in order to derive the 
relevant surface profile parameters [4]. For example, the study 
performed in [4] used the cubic spline interpolant to fit the 
surface profile data which facilitates analytical computation of 
the integrals. The approach also utilised a constant uncertainty 
bound on the interpolation function where the degree of the 
uncertainty bound is determined by an expert or from 
instrument limitations.  However, as already mentioned, 
approaches which use non-random interpolants do not allow for 
systematically characterising the interpolation uncertainties in 
the distribution of the parameters as they fail to address the fact 
that the uncertainties in places with sparse data distribution are 
expected to be lower than in places with a denser data 
distribution. A framework that allows for a systematic 
characterisation of uncertainties involved in interpolation is 
Kriging. Kriging can be interpreted as a Bayesian framework and 
is discussed briefly in the next section. 
 
 

2.2. Kriging   
    
   Kriging is a statistical interpolation technique. Given a set of 
points 𝑋 =  [𝑥1, 𝑥2, … , 𝑥𝑁], 𝑥𝑖  ∈ 𝑅𝐷 and a set of observations 
𝑍 =  [𝑧1, 𝑧2, … , 𝑧𝑁], 𝑧𝑖  ∈ 𝑅,  kriging interpolation allows to find 
a function 𝑓: 𝑅𝐷

 𝑅 such that  𝑓(𝑥𝑖)  =  𝑧𝑖  for 𝑖 =  1, 2, . . . 𝑁. 
Additionally, the kriging formula also provides a second function 
𝜎(𝑥) which expresses the uncertainty involved in the 
interpolation process. For an arbitrary point 𝑥∗, the kriging 
formula gives the best linear unbiased predictor (𝑓(𝑥∗)) as well 
as the degree of uncertainty  𝜎(𝑥∗). The uncertainty distribution 
can then be propagated to any quantity derived from the 
interpolation functions. In the case of surface metrology, 𝑥𝑖 
refers to a sampled location and 𝑧𝑖 refers to the height at the 𝑖th 
point. The covariance function is central to the kriging 
methodology and provides a degree of correlation between data 
points across the domain. It is worth noting that a zero-mean 
function as well as the squared exponential covariance function 
was utilised in this paper. This function defines the prior as 
follows: 
 

𝑚(𝑥) = 0 

cov (𝑓(𝑥), 𝑓(𝑥 ′)) = 𝑘(𝑥, 𝑥 ′) = exp(− 
1

2
|𝑥 − 𝑥′|2) 

 
where 𝑚(𝑥) is the mean function, which is assumed to be zero 

and cov (𝑓(𝑥), 𝑓(𝑥 ′)) is the covariance function.  

    It can be shown that the prediction 𝑓(𝑥∗) for an arbitray point 
𝑥∗  is a Gaussian distribution defined by the following equation: 
 

𝑝(𝑓(𝑥∗)|𝑥∗,  𝐷) = 𝒩( 𝜇∗, 𝛴∗) 

𝜇∗ = 𝑘(𝑥∗, 𝑥)𝑘(𝑥, 𝑥)−1𝑧 

𝛴∗ =  𝑘(𝑥∗, 𝑥∗) −  𝑘(𝑥∗, 𝑥)𝑘(𝑥, 𝑥)−1𝑘(𝑥, 𝑥∗) 

It is worth noting that the covariance function contains 
hyperparameters which is to be estimated. The estimation was 
carried-out using one-fold cross validation – a procedure 
discussed in [9]. Additionally, as the paper is only concerned with 
interpolation uncertainties, the measurement uncertainties 
were not included in the kriging formulas (Equation (3)).  
However, extending the approach to include measurement 
uncertainties is straightforward as shown in [7]. 
 
2.3. Propagating the Uncertainties 
 
   When a kriging model has been found, numerical integration 
was used to perform the calculation of the parameters. In 
particular, the data sets are sampled (𝑀 number of points) and 
then integrated using these points. Typically 𝑀>>𝑁 for an 
accurate estimation. For a 2 mm sampling length, the value of 𝑀 
= 2 000 was used in this paper. For each of these sampled points, 
Equation (3) provides the formula for calculating uncertainty 
interval. This uncertainty is then propagated when calculating 
the parameter as defined by GUM. The GUM framework is 
shown in Fig. 1. 
 
 
 
 
 
 
 
 
 
Figure 1. GUM propagation framework allows for propagating the 
uncertainty involved in an input quantity to an output quantity. 

𝑥1,  ሼ𝑧1,  𝑢(𝑧1)ൟ  

𝑥2,  ሼ𝑧2, 𝑢(𝑧2)ൟ      

…
 

𝑥𝑀,  ሼ𝑧𝑀,  𝑢(𝑧𝑀)ൟ 

𝑔(𝒁) 𝑦, 𝑢(𝑦) 
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It should be emphasized that vector 𝒁 =  [𝑧1, 𝑧2, … , 𝑧𝑀]   
represents the observed data at locations  𝑿 =  [𝑥1, 𝑥2, … , 𝑥𝑀], 
𝑢(𝑦) defines the  uncertainty (typically a probability distribution 
or any other measure of uncertainty)  of the derived quantity. 
𝑔(𝒛) is the formula for calculating the surface parameter of 
interest  such as the 𝑅𝑎 as defined in Equation (1) . It can be 
shown (according to the GUM document [6]) that the following 
set of equations can be used to calculate the propagated 
uncertainty distribution 𝑢(𝑦): 
 

𝑢(𝑦) = ∫ 𝑢(𝒁)𝛿(𝑦 − 𝑔(𝒁))𝑑𝒁 

𝑦̅ = ∫ 𝑦𝑢(𝑦)𝑑𝑦 = ∫ 𝑢(𝒁)𝑔(𝒁)𝑑𝒁 

𝑣𝑎𝑟𝑟(𝑦) = ∫(𝑦 − 𝑦̅)2𝑢(𝒁)𝑑𝒁 = ∫ 𝑢(𝒁)(𝑔(𝒁) − 𝑦̅)2𝑑𝒁 

 
where 𝑦̅ is the mean of the uncertainty distribution and 𝑣𝑎𝑟𝑟(𝑦) 
its variance. Equation (4) above defines the procedure for 
deriving the uncertainties involved in calculating the surface 
profile parameters. 

3. Datasets      

Two data sets were investigated in this paper. The first data 
set relates to a synthetic data defined in [5]. The data points are 
generated from a sinusoidal function (𝑓 = sin(𝑥)). Two sets of 
data samples (15 and 19 samples) were taken from the synthetic 
data set to investigate how the number of data points affect the 
uncertainty distribution. The sampled data points are used to 
calculate the surface profile parameters after using the kriging 
interpolant. The function from which the synthetic data was 
generated facilitates analytical integration so that the real 
values of the parameters to be calculated are known in advance. 
This will provide a means to compare the calculated parameters 
(from the data points) with the real values in order to validate 
the proposed approach. Note that such a comparison cannot be 
carried-out in real data sets, as it would be impossible to know 
what the real values of the parameters are.  The synthetic 
function as well as data points are shown in Fig 2. 

The second data set is derived from  a real surface from a 
machining experiment. A surface texture of about 2 mm x 2 mm 
was measured. As this paper is concerned with only profile 
measurements, a profile was extracted from this areal 
measurement. The profile was filtered with a Gaussian filter to 
remove long scale components.   The extracted profile is shown 
in Fig. 3. 

 
Figure 2. Synthetic Data. 

 
 

Figure 3. Real Milling Data set (Gaussian filtered). 

 

4. Results      

Table 1 shows the results of applying the proposed framework 
on the two data sets. As can be seen, results from the proposed 
approach were compared with the spline technique from [5] for 
both sets of data.  It can be seen from Table 1 that the proposed 
approach is able to accurately determine the correct value of the 
profile parameter. 

 
Table 1. Comparison of results for both real and synthetic data sets. The 
numbers represent the Ra values (μm) for the data sets. 

Synthetic 
Data set 

 Proposed Spline [5] Real 
Value 

15 
samples 

0.6366 0.6366 0.6366 

19 
samples 

0.6366 0.6366 0.6366 

Real Data set 0.5643 0.5870 NA 

 
In particular, in the case of the synthetic data set, both 

approaches are able to give good accuracy especially for two 
different number of sampled data points. The proposed 
Gaussian process approach is however able to accurately 
capture the uncertainties embedded in the interpolation 
function as can be seen in Fig. 4. The uncertainty intervals 
increase when there are less data as shown in Fig. 5. This result 
should be compared with the constant uncertainty interval 
approach shown in  Fig. 6. In the proposed approach, it can be 
seen   that the uncertainty is high when there is a sparsity of data 
around a region and vice versa. This uncertainty across the data 
domain is then propagated through in the calculation of the 
surface parameters using the GUM approach as described in 
Section 2.3 which consequently provides a characterisation of 
the interpolation uncertainties when deriving the particular 
parameter. 

In the case of the real data set, the interpolation function as 
well as the data points are shown in Fig. 7. The uncertainty 
bounds are much lower than those obtained from the synthetic 
data set because of the high data density (256 data points for a 
2 mm evaluation length). The propagated uncertainty is shown 
in Fig. 8. This distribution provides the interpolation 
uncertainties involved in the calculation of the Ra value. 

 



  

 
Figure 4. Interpolating function and uncertainty interval across the data 
domain for the synthetic function. Nineteen (19) data points were 
sampled from the true function. 

 
Figure 5.  Interpolating function and uncertainty interval across the data 
domain for the synthetic function. Fifteen (15) data points were sampled 
from the true function. 

 
Figure 6.  Constant uncertainty interval proposed in an existing study [5]. 
Note that this approach does not systematically provide a 
characterisation of the interpolation uncertainties 

 
Figure 7. Interpolation and uncertainty band on the real milling data set 
(zoomed). 

 
Figure 8. Propagated uncertainty in the calculation of the Ra parameter 
for the synthetic data set with 19 sampled point. Note Z represents the 
Ra parameter. 
 
 

5. Conclusion      

  
The paper has presented a new approach for characterising 

the uncertainty embedded in the calculation of surface profile 
parameters. The approach, which involves using a statistical 
interpolation technique based on the Gaussian process, 
provides a more systematic approach for modelling the 
interpolation-based uncertainties. The proposed technique is 
better than existing methodologies which typically use non-
random interpolants and/or constant uncertainty bands. The 
proposed approach was tested on a synthetic as well as real 
machining data sets. Results proved that not only are the profile 
parameter values able to  be correctly extracted, the proposed 
approach can correctly provide a  more credible measure of the 
uncertainties. 
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