

euspen’s 20th International Conference &
Exhibition, Geneva, CH, June 2020

www.euspen.eu

Fixture design using reinforcement learning

Dennis Wee Keong Neo 1, Darren Wei Wen Low 2, A. Senthil Kumar 2, Kui Liu 1

1Joining and Machining Group, Singapore Institute of Manufacturing Technology, 73 Nanyang Drive, Singapore 637662
2 Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576

dennis_neo@SIMTech.a-star.edu.sg

Abstract

This paper aims to explore the use of machine learning techniques, specifically reinforcement learning, as a tool to realise an
optimised fixture design. In response to a fixturing environment, the adjustments to the reinforcement learning process in the
exploration phase has been studied. Different learning exploration approaches have also been demonstrated with a case study to
validate its performance in a reward rich environment. These successful results would further credit the capability of the
reinforcement learning technique as an effective automated fixture design tool in generating well-designed fixtures at a short period
of time without any human intervention.

Computer-aided design; fixture design; artificial intelligence, reinforcement learning, learning exploration approach

1. Introduction

Fixtures are an integral aspect of manufacturing, providing
essential workpiece locating and clamping elements prior to
subsequent processes. Having well-designed fixtures are crucial
in achieving consistent and accurate manufacturing outcomes.
However, designing such fixtures is a challenging task due to
many engineering considerations and optimisation strategies.
Conventionally, fixture design relies on the vast heuristic
experience of human designers [1], demanding years of
apprenticeship to learn. Reliance on these skilled professionals
is essential in creating optimal fixtures, which results in costly
fixtures. Moreover, the experience-heavy nature of fixture
design causes a significant knowledge gap for junior fixture
design engineers, which can limit the effectiveness of their
contributions. Much research has therefore been done on
automating fixture design, which would potentially reduce
design costs, human error and lead time.

Case-based reasoning (CBR) has been the predominant
approach in automating fixture design [2,3,4,5] which leverages
on matching a given workpiece to similar proven fixturing
designs, subsequently providing the necessary design
adjustments. However, CBR needs a proper indexing of a design
library for design retrieval and evaluation, and final adjustments
to work [6]. Another limitation is that its reliance of extensive
and comprehensive fixture design libraries to produce fixturing
solutions limits the ability of CBR when processing unique and
unorthodox workpieces. If a given workpiece is significantly
different from those found in the library, CBR may not be able
to produce a valid result [7]. In other words, although CBR has
shown to be effective in solving experienced-based problems
through inference from a library, it is unable to adapt to
significantly different situations. This inflexible nature of CBR
therefore limits its potential in handling edge cases and CBR
ultimately still depends on fixture designers to provide high-
quality examples.

On the other hand, rule-based reasoning (RBR) has also been
studied in generating fixture designs [1,8,9]. RBR utilises a

selection of defined rules to convert geometric information into
suggested positions for fixture locating elements. RBR’s main
disadvantage is the difficulty in accurately and comprehensively
defining the rules needed to encompass all possible fixture
designs. Additionally, using too little rules would result in poor
coverage of possible fixturing problems, whereas too many rules
would make the code significantly complex [10]. A combination
of CBR and RBR [11] has also been attempted to combine the
benefits of both methods in generating fixture design solutions.
However, it still suffer from inheriting their individual limitations
as discussed previously.

Notwithstanding the facts that automatic fixture design using
CBR and RBR has been well researched, critical assumptions in
their fundamental mechanisms limits their practicality for
fixture design application. Machine learning has also been
explored in automating fixture design [12]. However, much of
reported work remains conceptual.

This paper presents the use of reinforcement learning to
generate optimal fixturing solutions. Through a proposed
reinforcement learning driven fixture design (RL-FD) framework,
reinforcement learning was used to generate optimised fixturing
solutions. In response to the fixturing environment, adjustments
to the reinforcement learning process in the exploration phase
is studied. A case study is presented, comparing a conventional
exploration method with an adjusted one. Two different agents
show improved average results over time, with the adjusted
exploration model exhibiting faster performance.

2. Framework of reinforcement learning based fixture design

A reinforcement learning driven fixture design (RL-FD) has
been developed as a novel approach to automate the fixture
design decisions. There are five key necessities needed for
crucial reinforcement learning function, as follows:

a) Generating workpiece silhouette,
b) Automatic generation of initial locators,
c) Physics simulation and state representation,
d) Action space and reward feedback, and

http://www.euspen.eu/

e) Convolutional neural network (CNN)
In this proposed RL-FD architecture as shown in Figure 1, a 2D

silhouette of a given workpiece is firstly generated since the
outer surface of workpiece tends to be more important for
locating and clamping in any 3-dimensional fixture system. 2D
silhouette also simplifies the physics and improves compatibility
with already available CNNs.

Figure 1. Proposed RL-FD framework for generating optimal fixture

In the second step, the initial locator positions are generated

to properly constrain a particular workpiece silhouette.
Workpiece silhouette geometries (see Figure 2) are defined
using the X-and Y-coordinates of the polygon edges. The list of
given coordinates can be used to generate the initial locators
around the silhouette using the following equations:

𝜃 = arctan 2 (
𝑦𝑏−𝑦𝑎

𝑥𝑏−𝑥𝑎
) (1)

𝑛 = [0,
√(𝑥𝑏−𝑥𝑎)2+(𝑦𝑏−𝑦𝑎)2

2𝑟
] (2)

𝑥𝑛 = 𝑥𝐴 + 𝑟(2𝑛 + 1)(𝑐𝑜𝑠𝜃),

𝑦𝑛 = 𝑦𝐵 + 𝑟(2𝑛 + 1)(𝑠𝑖𝑛𝜃) (3)

𝑥′𝑛 = 𝑥𝑛 + 𝑟(cos(90 − 𝜃)),

𝑦′𝑛 = 𝑦𝑛 − 𝑟(sin (90 − 𝜃)) (4)

Where (𝑥𝑎, 𝑦𝑎) and (𝑥𝑏 , 𝑦𝑏) represents the initial and
subsequent silhouette geometrical coordinates, respectively.
(𝑥𝑛 , 𝑦𝑛) are coordinates between A and B, where 𝑛 is a range of
integers defined by Eq. (2). (𝑥𝑛

′ , 𝑦𝑛
′), which is centre of each

circular locator can then be determined using Eq. (4). The
conversion occurs until all the edges of the given polygon has
been acted upon. These final converted coordinates are used to
automatically populate the necessary initial locator positions
based off the given geometry.

Figure 2. Locator geometries and locations coordinates

Next, a pybox2d, a physics rigid body simulation library [13,14]

would be utilized for physics interactions in a silhouette-locator
environment. With this environment, the fixture’s ability to
constrain the workpiece from moving and rotating will be
evaluated, as presented in Figure 3. In the proposed framework,

it only considers constrains in 2D directions and hence Trans_Z
is not considered. In response to Rot_X and Rot_Y, typically the
fixture has locators on the bottom which, when included with
the locators/clamps as generated by the proposed framework,
should theoretically restrict Rot_X and Rot_Y.

Figure 3. Evaluation of fixture’s ability to constrain the workpiece in the
two linear and one rotational directions.

A reinforcement learning agent, which is made using CNN, will

be trained against this environment. CNNs are convenient in this
study as a 2D pixel array can be used as an input. The CNN used
in this study is shown in Figure 4. This neural network [15,16],
which was originally designed for use on Atari game
environments. Changes include widening the neural network
input layer to incorporate the larger pixel array and adjustments
to grey scaling.

Figure 4. Convolutional neural network, CNN for decision-making
process to perform either Keep or Remove action. (Not drawn to scale)

There are only two actions available to the modified agent,

which are either a remove or keep locator action. These two
actions represent the absolute minimum necessary for proper
interactions with the physics simulation, which helps to speed
up the learning process. To encourage the agent to reach a more
optimal fixture with the least number of locators, positive
reward will be given for each successful remove action
performed. Successful removals are evaluated by applying a
series of forces and torques on the workpiece silhouette, as
explained in Figure 3. The evaluation simply identifies significant
linear or angular movement beyond acceptable limits, which is
indicates that the workpiece is no longer secure and therefore
the fixture is invalid.

With the rewards given for acceptable locator removal, the
agent should progressively get better at fixturing decision
making. Lastly, the agent would be able to create highly
optimised fixturing solutions, which will be stored and listed out
to the user for selection. The selected solution can then be used
to automatically generate a computer-aided design (CAD)
fixture.

3. Case study

This study utilises a workpiece as illustrated in Figure 5 as a
case study. With the developed RL-FD framework, a feasible

(𝑥𝑏 , 𝑦𝑏)

(𝑥𝑎 , 𝑦𝑎)

𝜃

(𝑥𝑛 , 𝑦𝑛)

(𝑥′0, 𝑦′0)

(𝑥0, 𝑦0)

𝑟

(𝜃 − 90)

fixture would be generated and employed for machining the top
surface of this component.

Figure 5. Selected workpiece as a case study

A key consideration of reinforcement learning is the
incorporation of an exploration method, which provides
adequate and representative training on all possible actions
available to the agent. At the start of any learning process, the
agent would pick actions from this exploration function instead
of the neural network. Overtime, dependence on this
exploration mechanism would decrease and instead the neural
network would be used to make decisions.

A widely adopted exploration method is selecting actions
randomly, with each possible action having an equal chance of
being selected. For the environment in this paper, the agent only
needs to decide between keep and remove. The exploration
mechanism of these two actions would therefore be as
illustrated in Figure 6a, where both actions would be chosen
50% of the time.

However, in the proposed fixture design environment an ideal
agent would perform the remove action frequently in order to
maximise its cumulative reward. Therefore, this study would
also compare a chance-adjusted model whereby the remove
and keep actions are performed 75% and 25% of the time
respectively as shown in Figure 6b. This adjustment should
theoretically allow the agent to learn quicker by bringing it closer
towards an ideal state, while also maintaining sufficient
representation of the keep action.

Figure 6. Exploration mechanism (a) shows equal chance of either keep
or remove actions in initial exploration phase (b) shows 75% chance of
remove and 25% keep in initial exploration phase.

Both of different agents would be trained on this environment

until 5,000,000 steps are performed. A step represents as a
single action performed by the agent. 5,000,000 steps was
chosen as a basis of comparison between both agents as
preliminary runs show stable results prior to this step count.
Both agents are:

a) 50-50 Agent: Performs 50% Remove and 50% Keep
when exploring

b) 75-25 Agent: Performs 75% Remove and 25% Keep
when exploring

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐹𝑖𝑛𝑎𝑙 𝑅𝑒𝑤𝑎𝑟𝑑 =
∑ 𝐹𝑖𝑛𝑎𝑙 𝑅𝑒𝑤𝑎𝑟𝑑𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑢𝑛𝑠
 (5)

The average final rewards will be used as a means of
evaluating learning performance and is calculated at every step
using Eq. (5). Final rewards are recorded when the minimum
number of active constraints is achieved, or when the solution is
not valid. In both cases, the physics environment is reset after.

As shown in Figure 7, both agents show performance
improvements over time This demonstrates their capability in
learning from the fixture design environment and progressive
improvements in making better fixture design decisions.
However, the 50-50 Agent initially started with a noticeably
lower average reward and took significantly longer to reach
higher scores as compared to the 75-25 Agent. This observation
can be attributed by a more optimal exploration phase, resulting
in favourable learning performance as exhibited by the 75-25
Agent.

Using the same computer in both instances, faster learning
was observed from the 75-25 Agent as compared to the 50-50
Agent. The 75-25 Agent also obtained the optimal fixture
(highest reward) in 20 hours, as compared to 35 hours from the
50-50 Agent. The time reduction of 43% exhibited by the 75-25
Agent is preferable, resulting in an overall faster fixture
optimization process which consequentially reduces fixture lead
times.

Figure 7. Average final rewards obtained during training of the agent.
A single step refers to either a Remove or Keep action.

Generated solutions that receive high cumulative rewards are
saved and listed out as presented in Figure 9. The presented
solutions have been successfully passed the fixturing test as
described in Section 2. Therefore, they represent the valid and
optimal fixturing solutions for the given workpiece.

However, in a real-world scenario, there are other
considerations that designers might have to account for (i.e.
restrictions with the space available, worker ergonomics and
cost). The proposed framework simply generates a list of
optimised and practical fixtures.

After considering several factors such as cost, ergonomics and
space constraints, the designer would have to make a decision
as to which of the optimised fixtures are used. Upon selecting
any of the fixturing solutions in Figure 9, following which, the
user will able be required to select which of the given locators
should be changed into clamping elements. A completed CAD
model from one of the solutions can then be generated as
shown in Figure 9.

20

25

30

35

40

45

0 1M 2M 3M 4M 5M

A
ve

ra
ge

 F
in

al
 R

ew
ar

d

Steps

Average Reward

50-50 Agent 75-25 Agent

Figure 9. Selected training results generated from training agent

4. Conclusions

Fixture design relies heavily on the experience and awareness
of the multitude of engineering considerations. It is therefore
very vital and essential to automate this process, which can
reduce the reliance on experienced designers and thereby
improving the overall efficiency. Historical attempts in
automated fixture design has largely adopted the use of CBR and

[1] Nee A Y C and Kumar A S 1991. A Framework for an Object/Rule-
Based Automated Fixture Design System. CIRP Annals 40 147-151

[2] Kumar A S and Nee A Y C 1995. A framework for a variant fixture
design system using case-based reasoning technique. Manu. Sci.
Eng., ASME, 3 763-775

[3] S. H. Sun and J. L. Chen 1996. A fixture design system using case-
based reasoning. Eng. App. Art. Intel. 9 533-540.

[4] W. Li, P. Li, and Y. Rong 2002. Case-based agile fixture design. J.
Mat. Proc. Tech. 128 7-18

[5] H. Hashemi, A. M. Shaharoun, and I. Sudin. A case-based reasoning
approach for design of machining fixture. Int. J. Adv. Manu. Tech.
74, no. 1, pp. 113-124, 2014.

[6] D. McSherry 2002. The Inseparability Problem in Interactive Case-
Based Reasoning. Research and Development in Intelligent
Systems XVIII, London, , pp. 109-122: Springer London.

[7] P. S. Szczepaniak and A. Duraj 2018. Case-Based Reasoning: The
Search for Similar Solutions and Identification of Outliers.
Complexity, 12, 9280787.

[8] Dong X, DeVries W R and Wozny M J 1991. Feature-Based
Reasoning in Fixture Design. CIRP Annals 40 111-114

RBR, which exhibits certain fundamental limitations in its
practical use. This paper demonstrates the use of an automated
RL-FD framework using reinforcement learning.

The framework was described and demonstrated through a
case study. Reinforcement learning was found to be capable of
training a neural network in making better fixture design
decisions over time. The optimisation of the exploration
mechanism has shown to be effective in improving the training
time. Further research is onoing to encompass more complex
workpieces using non-silhouette-based approaches.

[9] A. S. Kumar, A. Y. C. Nee, and S. Prombanpong 1992. Expert
fixture-design system for an automated manufacturing
environment. CAD, 24, 316-326.

[10] J. Prentzas and I. Hatzilygeroudis 2007. Categorizing approaches
combining rule-based and case-based reasoning. Expert Systems
24 97-122

[11] Zhang F P, Wu D, Zhang T H, Yan Y, and Butt S I 2018. Knowledge
component-based intelligent method for fixture design. Int. J. Adv.
Manu. Tech. 94 4139-4157

[12] Kumar A S, Subramaniam V and Tan B T 2000. Conceptual design of
fixtures using machine learning techniques. Int. J. Adv. Manu. Tech.
16 176-181,

[13] E. Catto. (2011). Box2D. https://github.com/erincatto/Box2D
[14] K. Lauer. (2011). pybox2d. https://github.com/pybox2d/pybox2d
[15] Mnih V, Kavukcuoglu K, Silver D, Graves A, Antonoglou I, Wierstra

D, Riedmiller M 2013. Playing Atari with Deep Reinforcement
Learning. Technical Report arXiv:1312.5602[cs.LG], Deepmind
Technologies.

[16] Mnih V. et al. 2015 Human-level control through deep
reinforcement learning. Nature 518 529–533

References

Figure 8. Generated fixture (a) Raw workpiece prior to machining.
(b) Machined top surface of workpiece after intermediate machining
processes

https://github.com/pybox2d/pybox2d

