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Abstract 
 
This paper aims to explore the use of machine learning techniques, specifically reinforcement learning, as a tool to realise an 
optimised fixture design. In response to a fixturing environment, the adjustments to the reinforcement learning process in the 
exploration phase has been studied. Different learning exploration approaches have also been demonstrated with a case study to 
validate its performance in a reward rich environment. These successful results would further credit the capability of the 
reinforcement learning technique as an effective automated fixture design tool in generating well-designed fixtures at a short period 
of time without any human intervention. 
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1. Introduction 

Fixtures are an integral aspect of manufacturing, providing  
essential workpiece locating and clamping elements prior to 
subsequent processes. Having well-designed fixtures are crucial 
in achieving consistent and accurate manufacturing outcomes. 
However, designing such fixtures is a challenging task due to 
many engineering considerations and optimisation strategies. 
Conventionally, fixture design relies on the vast heuristic 
experience of human designers [1], demanding years of 
apprenticeship to learn. Reliance on these skilled professionals 
is essential in creating optimal fixtures, which results in costly 
fixtures. Moreover, the experience-heavy nature of fixture 
design causes a significant knowledge gap for junior fixture 
design engineers, which can limit the effectiveness of their 
contributions. Much research has therefore been done on 
automating fixture design, which would potentially reduce 
design costs, human error and lead time. 

Case-based reasoning (CBR) has been the predominant 
approach in automating fixture design [2,3,4,5] which leverages 
on matching a given workpiece to similar proven fixturing 
designs, subsequently providing the necessary design 
adjustments. However, CBR needs a proper indexing of a design 
library for design retrieval and evaluation, and final adjustments 
to work [6]. Another limitation is that its reliance of extensive 
and comprehensive fixture design libraries to produce fixturing 
solutions limits the ability of CBR when processing unique and 
unorthodox workpieces. If a given workpiece is significantly 
different from those found in the library, CBR may not be able 
to produce a valid result [7]. In other words, although CBR has 
shown to be effective in solving experienced-based problems 
through inference from a library, it is unable to adapt to 
significantly different situations. This inflexible nature of CBR 
therefore limits its potential in handling edge cases and CBR 
ultimately still depends on fixture designers to provide high-
quality examples. 

On the other hand, rule-based reasoning (RBR) has also been 
studied in generating fixture designs [1,8,9]. RBR utilises a 

selection of defined rules to convert geometric information into 
suggested positions for fixture locating elements. RBR’s main 
disadvantage is the difficulty in accurately and comprehensively 
defining the rules needed to encompass all possible fixture 
designs. Additionally, using too little rules would result in poor 
coverage of possible fixturing problems, whereas too many rules 
would make the code significantly complex [10]. A combination 
of CBR and RBR [11] has also been attempted to combine the 
benefits of both methods in generating fixture design solutions. 
However, it still suffer from inheriting their individual limitations 
as discussed previously.  

Notwithstanding the facts that automatic fixture design using 
CBR and RBR has been well researched, critical assumptions in 
their fundamental mechanisms limits their practicality for 
fixture design application. Machine learning has also been 
explored in automating fixture design [12]. However, much of 
reported work remains conceptual. 

This paper presents the use of reinforcement learning to 
generate optimal fixturing solutions. Through a proposed 
reinforcement learning driven fixture design (RL-FD) framework, 
reinforcement learning was used to generate optimised fixturing 
solutions. In response to the fixturing environment, adjustments 
to the reinforcement learning process in the exploration phase 
is studied. A case study is presented, comparing a conventional 
exploration method with an adjusted one. Two different agents 
show improved average results over time, with the adjusted 
exploration model exhibiting faster performance. 

2. Framework of reinforcement learning based fixture design   

A reinforcement learning driven fixture design (RL-FD) has 
been developed as a novel approach to automate the fixture 
design decisions. There are five key necessities needed for 
crucial reinforcement learning function, as follows: 

a) Generating workpiece silhouette, 
b) Automatic generation of initial locators,  
c) Physics simulation and state representation, 
d) Action space and reward feedback, and 
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e) Convolutional neural network (CNN) 
In this proposed RL-FD architecture as shown in Figure 1, a 2D 

silhouette of a given workpiece is firstly generated since the 
outer surface of workpiece tends to be more important for 
locating and clamping in any 3-dimensional fixture system. 2D 
silhouette also simplifies the physics and improves compatibility 
with already available CNNs.  

 

Figure 1. Proposed RL-FD framework for generating optimal fixture 
 
In the second step, the initial locator positions are generated 

to properly constrain a particular workpiece silhouette. 
Workpiece silhouette geometries (see Figure 2) are defined 
using the X-and Y-coordinates of the polygon edges. The list of 
given coordinates can be used to generate the initial locators 
around the silhouette using the following equations: 

 

𝜃 = arctan 2 (
𝑦𝑏−𝑦𝑎

𝑥𝑏−𝑥𝑎
) (1) 

𝑛 = [ 0,
√(𝑥𝑏−𝑥𝑎)2+(𝑦𝑏−𝑦𝑎)2

2𝑟
 ] (2) 

𝑥𝑛 = 𝑥𝐴 + 𝑟(2𝑛 + 1)(𝑐𝑜𝑠𝜃),  

𝑦𝑛 = 𝑦𝐵 + 𝑟(2𝑛 + 1)(𝑠𝑖𝑛𝜃) (3) 

𝑥′𝑛 = 𝑥𝑛 + 𝑟(cos(90 − 𝜃)),  

𝑦′𝑛 = 𝑦𝑛 − 𝑟(sin (90 − 𝜃)) (4) 
 

Where (𝑥𝑎, 𝑦𝑎) and (𝑥𝑏 , 𝑦𝑏) represents the initial and 
subsequent silhouette geometrical coordinates, respectively. 
(𝑥𝑛 , 𝑦𝑛) are coordinates between A and B, where 𝑛 is a range of 
integers defined by Eq. (2). (𝑥𝑛

′ , 𝑦𝑛
′ ), which is centre of each 

circular locator can then be determined using Eq. (4). The 
conversion occurs until all the edges of the given polygon has 
been acted upon. These final converted coordinates are used to 
automatically populate the necessary initial locator positions 
based off the given geometry. 

 

Figure 2. Locator geometries and locations coordinates  
 
Next, a pybox2d, a physics rigid body simulation library [13,14] 

would be utilized for physics interactions in a silhouette-locator 
environment. With this environment, the fixture’s ability to 
constrain the workpiece from moving and rotating will be 
evaluated, as presented in Figure 3. In the proposed framework, 

it only considers constrains in 2D directions and hence Trans_Z 
is not considered. In response to Rot_X and Rot_Y, typically the 
fixture has locators on the bottom which, when included with 
the locators/clamps as generated by the proposed framework, 
should theoretically restrict Rot_X and Rot_Y. 

 

Figure 3. Evaluation of fixture’s ability to constrain the workpiece in the 
two linear and one rotational directions. 

 
A reinforcement learning agent, which is made using CNN, will 

be trained against this environment. CNNs are convenient in this 
study as a 2D pixel array can be used as an input. The CNN used 
in this study is shown in Figure 4. This neural network [15,16], 
which was originally designed for use on Atari game 
environments. Changes include widening the neural network 
input layer to incorporate the larger pixel array and adjustments 
to grey scaling. 

 

 

Figure 4. Convolutional neural network, CNN for decision-making 
process to perform either Keep or Remove action. (Not drawn to scale)  

 
There are only two actions available to the modified agent, 

which are either a remove or keep locator action. These two 
actions represent the absolute minimum necessary for proper 
interactions with the physics simulation, which helps to speed 
up the learning process. To encourage the agent to reach a more 
optimal fixture with the least number of locators, positive 
reward will be given for each successful remove action 
performed. Successful removals are evaluated by applying a 
series of forces and torques on the workpiece silhouette, as 
explained in Figure 3. The evaluation simply identifies significant 
linear or angular movement beyond acceptable limits, which is 
indicates that the workpiece is no longer secure and therefore 
the fixture is invalid. 

With the rewards given for acceptable locator removal, the 
agent should progressively get better at fixturing decision 
making. Lastly, the agent would be able to create highly 
optimised fixturing solutions, which will be stored and listed out 
to the user for selection. The selected solution can then be used 
to automatically generate a computer-aided design (CAD) 
fixture. 

3. Case study  

This study utilises a workpiece as illustrated in Figure 5 as a 
case study. With the developed RL-FD framework, a feasible 
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fixture would be generated and employed for machining the top 
surface of this component.  
 

 

Figure 5. Selected workpiece as a case study 
 

A key consideration of reinforcement learning is the 
incorporation of an exploration method, which provides 
adequate and representative training on all possible actions 
available to the agent. At the start of any learning process, the 
agent would pick actions from this exploration function instead 
of the neural network. Overtime, dependence on this 
exploration mechanism would decrease and instead the neural 
network would be used to make decisions. 

A widely adopted exploration method is selecting actions 
randomly, with each possible action having an equal chance of 
being selected. For the environment in this paper, the agent only 
needs to decide between keep and remove. The exploration 
mechanism of these two actions would therefore be as 
illustrated in Figure 6a, where both actions would be chosen 
50% of the time. 

However, in the proposed fixture design environment an ideal 
agent would perform the remove action frequently in order to 
maximise its cumulative reward. Therefore, this study would 
also compare a chance-adjusted model whereby the remove 
and keep actions are performed 75% and 25% of the time 
respectively as shown in Figure 6b. This adjustment should 
theoretically allow the agent to learn quicker by bringing it closer 
towards an ideal state, while also maintaining sufficient 
representation of the keep action. 

 

 

Figure 6. Exploration mechanism (a) shows equal chance of either keep 
or remove actions in initial exploration phase (b) shows 75% chance of 
remove and 25% keep in initial exploration phase. 

 
Both of different agents would be trained on this environment 

until 5,000,000 steps are performed. A step represents as a 
single action performed by the agent. 5,000,000 steps was 
chosen as a basis of comparison between both agents as 
preliminary runs show stable results prior to this step count. 
Both agents are: 

a) 50-50 Agent: Performs 50% Remove and 50% Keep 
when exploring 

b) 75-25 Agent: Performs 75% Remove and 25% Keep 
when exploring 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐹𝑖𝑛𝑎𝑙 𝑅𝑒𝑤𝑎𝑟𝑑 =  
∑ 𝐹𝑖𝑛𝑎𝑙 𝑅𝑒𝑤𝑎𝑟𝑑𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑢𝑛𝑠
 (5) 

 

The average final rewards will be used as a means of 
evaluating learning performance and is calculated at every step 
using Eq. (5). Final rewards are recorded when the minimum 
number of active constraints is achieved, or when the solution is 
not valid. In both cases, the physics environment is reset after. 

As shown in Figure 7, both agents show performance 
improvements over time This demonstrates their capability in 
learning from the fixture design environment and progressive 
improvements in making better fixture design decisions. 
However, the 50-50 Agent initially started with a noticeably 
lower average reward and took significantly longer to reach 
higher scores as compared to the 75-25 Agent. This observation 
can be attributed by a more optimal exploration phase, resulting 
in favourable learning performance as exhibited by the 75-25 
Agent. 

Using the same computer in both instances, faster learning 
was observed from the 75-25 Agent as compared to the 50-50 
Agent. The 75-25 Agent also obtained the optimal fixture 
(highest reward) in 20 hours, as compared to 35 hours from the 
50-50 Agent. The time reduction of 43% exhibited by the 75-25 
Agent is preferable, resulting in an overall faster fixture 
optimization process which consequentially reduces fixture lead 
times. 

 

Figure 7. Average final rewards obtained during training of the agent. 
A single step refers to either a Remove or Keep action. 
 

Generated solutions that receive high cumulative rewards are 
saved and listed out as presented in Figure 9. The presented 
solutions have been successfully passed the fixturing test as 
described in Section 2. Therefore, they represent the valid and 
optimal fixturing solutions for the given workpiece.  

However, in a real-world scenario, there are other 
considerations that designers might have to account for (i.e. 
restrictions with the space available, worker ergonomics and 
cost). The proposed framework simply generates a list of 
optimised and practical fixtures.  

After considering several factors such as cost, ergonomics and 
space constraints, the designer would have to make a decision 
as to which of the optimised fixtures are used. Upon selecting 
any of the fixturing solutions in Figure 9, following which, the 
user will able be required to select which of the given locators 
should be changed into clamping elements. A completed CAD 
model from one of the solutions can then be generated as 
shown in Figure 9. 
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Figure 9. Selected training results generated from training agent 

4. Conclusions  

Fixture design relies heavily on the experience and awareness 
of the multitude of engineering considerations. It is therefore 
very vital and essential to automate this process, which can 
reduce the reliance on experienced designers and thereby 
improving the overall efficiency. Historical attempts in 
automated fixture design has largely adopted the use of CBR and 
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Figure 8. Generated fixture (a) Raw workpiece prior to machining. 
(b) Machined top surface of workpiece after intermediate machining 
processes 
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