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Abstract 
The currently available CAD-CAM-NC process chain involves design data to be passed from CAD environment to CAM, where an 
operator’s empirical knowledge is used to select optimal cutting parameters. At this stage the operator has only qualitative 
information of the cutting forces and the machine’s dynamic behaviour, and safe cutting parameters are a result of the operator’s 
accumulated experience. Once this part programme is executed on the machine, it is difficult to provide quality-related indicators. 
Thus, most of the produced parts, especially in performance- or safety-critical applications, pass through the CMM. For larger 
components, the post-process metrology cost can be up to 25-50 % of the total cost of the part. 
The availability of better computing and possibility to run digital-twin models presents an opportunity to estimate the quality of the 
metal cutting in parallel to the real process. The present work investigates an approach for virtual real-time quality estimation in 
metal cutting. A digital-model of the machine tool is created to realize this. For the current study, this digital-model incorporates a 
stiffness map of the machine tool augmented with models of various tools and tool holders. When this digital-model is simulated 
with the real-time data of the process—obtained from the machine controller and additional sensors—it estimates the tool 
deflection. The real-time data consists of the compensated tool position from the machine tool controller, cutting forces, and the 
tool table from the machine controller. Collectively, such data is called ‘digital-fingerprint’ or ‘digital-shadow’ of the process. This 
data is then used to generate a faceted body in real-time, called ‘in-progress digital workpiece’, which can be easily compared to the 
target CAD of the part to estimate the quality of machining. This type of workflow provides better information on the process quality 
in real-time, thereby eliminating or reducing the CMM time for manufactured parts. 
 
 
Process monitoring; Virtual metrology; Virtual quality control; Edge computing; Process parallel quality estimation; Digital shadow; Digital twin; 
Closed-loop manufacturing  

1. Introduction 

To date, the conventional CAD-CAM-NC process chain relies 
heavily on an operator’s empirical knowledge to select the safe 
cutting parameters. His decisions are based on accumulated 
experience that is guided by qualitative information regarding 
cutting forces and the machine’s dynamic behaviour, and by 
information provided by cutting tool and machine tool 
manufacturers on safe cutting parameters. 

Research efforts over the last few decades have been aiming 
to decrease the impact of the operator and consequently 
increase machining quality. Similarly, the existing techniques 
that are used to make predictions about the process 
performance rely on accurate model-based simulations [1-4], 
where the quality of the prediction can be directly linked to the 
quality of the model, e.g. [5]. While modern CAM simulations 
include the physical behaviour of a given machine tool—like NC 
controls, servo motor—to verify and optimise toolpaths, they 
have a built-in flaw—they cannot model and are hence unable to 
predict the effect of randomness of the process e.g. variation in 
process forces, tool wear, clamping conditions, etc. [6, 7]. As 
these disturbances are unknown in a-priori simulations, their 
influence on process performance can only be assessed using 
real-time process data captured during machining.  

With the availability of affordable and powerful industrial 
computers, better process monitoring is now possible by 
analysing real-time data from the machine tools. This opens up 

the avenue for the analysis of the effect of random errors on 
machining operation [3, 8]. Besides collecting data generated by 
the machine tool itself, it has been observed that by adding 
additional sensors, knowledge about random errors of the 
process can be gathered [8, 9]. However, the question remains 
on how this information can be linked to the quality of the 
produced part. 

To achieve this, a virtual machine tool model is set up, which 
contains physical models based on simulation and 
measurements (refer figure 1). This digital-model is run on an 
Edge computer and is fed by the data from the machine 
controller, like current tool position, measured tool dimensions 
from the tool table and, if possible, updated data from the in-situ 
tool setter. The digital-model also receives additional data from 
added sensors including cutting forces and vibration. Resultant 
output is then fed to a real-time material removal simulation, 
which is similar to the material removal simulation routines 
available in commercial CAM packages. The material removal 
simulation produces a high-fidelity 3D mesh of the part being 
produced on the machine. This 3D mesh includes process 
randomeness resulting from relative displacement of the tool 
and workpiece. As a final step of the quality estimation, this 3D 
mesh can be analysed against the target CAD of the part. With 
an automated comparison of the target CAD’s geometric 
dimensions and tolerances (GD&T) data and produced 3D mesh, 
an early detection of failure or process control can be achieved, 
as opposed to delayed detection after a direct measurement on 
a CMM. This workflow is outlined by Kushwaha et al. [10]. 
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However, authors have also outlined the limitations associated 
with high computation loads associated with the high-fidelity 
material removal simulation. 

This article improves the workflow in [10], and reduces the 
reliance on the material removal simulation while producing a 
high-resolution profile of the machined surface. For 
completeness, the original workflow and improvements are 
described in the next section. The final section of the article 
shows the results obtained on machining prismatic parts. 
Concluding remarks are discussed thereafter. 

2. Digital model 

The presented in-process quality estimation on an Edge 
computer requires a digital-model of the machine tool, a 
communication topology with the machine tool, and a material 
removal simulation. This section describes these constituent 
parts in the successive sub-sections. 

The commercial quality-predictive simulation routines 
available as CAD-CAM plugins can be improved by feeding a live 
stream of data from machine encoders. Nevertheless, this kind 
of simulation fails to quantitatively identify the random 
deviation of the tool centre point from the programmed position 
due to effects like finite stiffness of the structure, thermal 
deformation and uncaptured volumetric errors. This article deals 
with the identification of the tool centre point deviation due to 
the finite stiffness of the machine tool and machining forces. To 
incorporate the information of the stiffness of the machine tool, 
a digital-model of the machine tool is created. Along with other 
dimensional parameters of the machine tool, this model 
includes the machine calibration (volumetric error 

compensation table, a look-up table) and a dynamic compliance 
map of the machine [11]. 

In order to reduce the total number of measurements 
required to obtain the frequency response function of every tool 
in the machine magazine, a compliance map of the machine is 
characterised by the receptance coupling method [12, 13]. A 
static compliance map in the x-direction of the machine tool 
with a 3 mm tungsten carbide tool shank and 8 mm overhang is 
shown in figure 2. This method of characterisation captures the 
model of every joint and coupling present in the machine 
structure with just one measurement, and approximates it as a 
linear time-invariant system. This compliance map is analogous 
to the volumetric error compensation table, except this map 
contains compliance of the machine tool. 

Referring to figure 3, this digital-model when fed with the 
tool position from the machine controller and measured process 
forces—the ‘digital-shadow’—generates the actual tool position 
during the process. 

A data exchange stream is required to feed the digital-model 
of the machine tool and the process running on an Edge 
computer, this communication is set up by industrial 
communication protocols like PROFINET. This data stream 
comprises of events on the machine tool, like the start and stop 
of the programme, coolant status, current tool number, 
controller error status etc. Event-based data is also used to 
synchronise the data stream from various data sources. 

The rate of reading data from the machine depends on the 
required resolution of the resultant 3D mesh from the material 
removal simulation and is bottle-necked by available computing 
power on the machine controller and the Edge computer. As an 
example, a programmed feed rate of 100 mm/min and tool 
position sample rate of 200 samples/second will result in a 
spatial resolution of 8.3 µm. On the machine controller, this 
sample rate is limited by the machine’s NC controller, as for an 
example, a machine running on a Sinumerik 840d SL, with an 
interpolator cycle (IPO) time of 2 ms can provide position data 
at a maximum of 500 samples/second. 

The data rate from the analog sensors and subsequent data 
processing is also performed in real-time. The cycle rate and 
data resolution should be set so that it sufficiently captures the 
required dynamic behaviour of the tool. 

The material removal routine then uses the consecutive 
actual tool centre point position and tool geometry (tool’s outer 
profile, and not cutting edge information) and runs it over a 3D 
mesh of the workpiece. A Boolean operation on geometry where 
tool-swept geometry is subtracted from the workpiece mesh 
results in the final 3D mesh of the machined part. This is the 
most expensive computation step, as the generation of high-
fidelity stl mesh demands high memory usage. It should be 
noted that improving the 3D mesh precision also increases the 
memory requirement by a power of two, along with more 
computation load. In order to reduce the reliance on the 

Figure. 1. Concept of in-process virtual quality inspection 

Figure 3. Proposed model to obtain actual tool position Figure 2. Static stiffness map 



  

 

material removal simulation to calculate the profile of the 
prismatic parts, the calculated tool path is offset by the 
measured tool radius. The known problem associated with 
offsetting a curve and arising singularities is solved by the 
method described in [14]. This method completely eliminates 
the need to run the material removal simulation to calculate the 
profile of the manufactured part, thereby reducing the 
computation load. 

3. Experimental validation 

The methodology described in the previous section is 
employed on a DMG Sauer US 20—a five-axes milling machine—
run by Siemens Sinumerik® 840d SL controller. An industrial 
computer—Beckhoff® CX2062 powered by an eight core Intel® 
Xeon® processor and 32 GB of RAM—is added as an Edge 
computing device to the existing machine controller to receive 
the process data and run the material removal simulations.  

An adapted ISO 10791-7 2014 part as shown in figure 4 is 
machined from Titanium alloy Ti6Al4V. The cutting parameters 
and tool description are listed in Table 1. Down milling was 
employed unless specified otherwise. 

Table 1 Employed tool and cutting parameters 

Parameter Value 

Tool DIXI 7242, ϕ 6 mm, two teeth (z=2)  

Cutting speed Vc 30 m/min 

Feed per tooth fz 0.02 mm/tooth (max) 

Depth of cut ap 1 mm 

Width of cut ae 20 % tool diameter (max.) 

 
Process forces were measured using a Kistler dynamometer 

9119AA1 (figure 4 inset). Analog data is collected at 1 kHz, as the 
dynamic compliance model of the tool is validated only for the 
first 200 Hz. The tool was measured by an on-machine 
Renishaw® NC4 tool setter. It was measured before and after 
finishing every feature. Cutting conditions of the features shown 
in figure 4 are listed in Table 2. 

The material removal simulation was run with a precision of 
7.6 µm. This 3D mesh is generated as an stl file and can be 
compared against the available geometric dimensioning and 
tolerancing data from the design and quality requirements (ISO 
1101). In the current case, GOM Inspect is used to post-process 
the data and create an inspection report. In table 2, the results 
of the quality estimation by material removal simulation are 
listed and compared against the measurements on a Werth 
VideoCheck® CMM. The effect of tool wear is also shown by 
machining with and without cutter compensation. 

Table 2 Process parallel quality estimation results 

Feature Nominal 
dimension 
[mm] 

Cut type 
(cutter 
compensa
tion) 

CMM 
[mm] 
(deviation 
from 
nominal) 

Virtual 
measurements 
[mm] 
(deviation as 
compared to 
CMM) 

S1 (S11to 
S12) 

55 Down 
(On) 

55.0289 
(+0.0289) 

55.037 
(+0.0081) 

S2 (S21 
to S22) 

55 Up 
(Off) 

54.9901 
(-0.0099) 

55.001 
(+0.0109) 

D1 (dia.) 50 Down 
(On) 

50.0311 
(+0.0311) 

50.038 
(+0.0069) 

D2 (dia.) 15 Down 
(On) 

14.9659 
(-0.0341) 

14.958 
(-0.0079) 

 Mean error as compared to CMM [mm] 0.0085 

Figure 4. Machined workpiece, red arrows show the feed direction for 

the feature, inset: workpiece mounted on dynamometer on machine. 

Figure 5. Geometric deviation showing the effect of local variation of cutter engagement on the quality; left: tool path simulation performed in 
Siemens NX®, right: comparision of virtual estimation of the profile against the profile measured on CMM. 

Width of cut 𝑎𝑒 = 1 𝑚𝑚 

𝑎𝑒 = 1.8 𝑚𝑚 



  

 

As compared to the CMM, the process parallel quality 
estimation has a mean error of 8.5 µm, it should be noted that 
geometry discretisation of the 3D mesh was set to 7.6 µm. The 
total CPU time to simulate the material removal is only 0.4 
hours, whereas the machining time was 3.25 hours. Any further 
improvement would quadratically increase the memory 
requirement. To overcome this, the recorded tool path is offset 
by the known tool radius while removing the singularities 
associated with the curve offsetting. This method directly results 
in the locus of cutter engagement points. 

The change in cutter engagement results in variation of 
cutting forces, which in turn results in variation in tool 
displacement. A similar tool path with varying width of cut 𝑎𝑒 
was designed while machining feature D1. As shown in figure 5, 
this variation in cutter engagement effects the roundness of the 
machined feature. As can be seen, the proposed method is in 
agreement with the measurements on CMM (fibre probe on 
Werth VideoCheck®). This method also has a better estimation 
of the feature diameter—50.034 mm—a deviation of only 2.9 
μm as compared to 6.9 μm by material removal simulation. 

Based on the same methodology, a spur gear was machined 
using the machining parameters as listed in table 1. The profile 
of the face and flank of one of the gear teeth is measured by the 
fibre probe of the Werth VideoCheck®. Figure 6 shows the 
profile of the gear tooth estimated from the data obtained while 
machining, as compared to the same measured on CMM. As the 
worst case estimation error is only 3.6 μm, the proposed 
method can be employed for in-process quality estimation. 

4. Conclusion 

An in-process quality estimation method is described. This 
method is based on a digital-model constructed from measuring 

the compliance map of the machine tool. Being analogous to the 
volumetric error compensation table, this map has to be 
contructed only once during the machine calibration. 
Measurement efforts are further reduced by employing 
receptance coupling. The improvement over quality estimation 
methods based on material removal simulation is also shown. 
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Figure 6. Top: machined spur gear outline; bottom: measured profile 


