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Abstract 
Deep learning (DL) has proven to be a powerful tool for solving common machine vision tasks, such as image classification, defect 
segmentation and defect recognition. Usually, training DL models requires significant amounts of annotated data samples, which are 
generally sparse or of inadequate quality in many quality assurance applications in the engineering domain. Especially the thorough 
annotation of data yields a major obstacle for the generation of industrial datasets, since it is a complex, time-consuming task 
requiring expert knowledge of the process under examination. Further, the rareness of defects in rather stable production processes 
can lead to highly unbalanced datasets, hampering the training process. Combined with the seldom distribution of industrial data 
due to privacy concerns, the lack of data often hinders the adoption of DL approaches for quality assurance. Recently, network 
structures following the design of Generative Adversarial Networks (GANs) show astonishing results in the field of image synthesis 
and neural style transfer. Given a set of unpaired images from two domains, cycle-consistent GANs (CycleGANs) learn how to translate 
a given image from one domain to the other and vice-versa. This capability can be exploited to augment datasets in a controllable 
manner in order to alleviate the problems arising in the application of DL for realizing vision-based quality control. This work 
investigates the employment of CycleGANs to extend the image datasets for two use cases, the detection of pores in computed 
tomography data and the detection of surface defects on sheared edges of fine blanked parts. Given randomly generated binary 
masks, the trained CycleGANs are capable of generating an arbitrary amount of synthetic yet realistic images in the desired domains, 
alleviating the problems of both the data amount and the necessary annotations and demonstrating the great potential of image 
synthesis using GANs. 
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1. Introduction  

Data-driven automation and optimization of manufacturing 
systems within the fourth industrial revolution requires the 
ability to monitor, record and link any relevant process data and 
quality information to analyze them with respect to a 
subsequent decision process. Already today vision-based quality 
control (QC) systems are capable of monitoring many 
manufacturing processes and products yielding reliable results 
for an in-line quality control [1]. However, these systems face 
increasingly demanding conditions such as small batch sizes and 
complex geometries for additively manufactured (AM) 
components [2] or changing environmental conditions during 
mass production processes like industrial stamping [3]. Deep 
Learning (DL) methods promise to be a viable solution to cope 
with these conditions. One particular strength is the ability to 
extract features in a data-driven manner without the need of 
human intervention [4] and adapt themselves to the hidden 
structure of the data. For this reason, DL methods are 
considered a key technology in order to realize the vision of 
Industry 4.0 and have proven to exceed the capabilities of 
classical methods in common machine vision tasks such as 
defect classification, defect recognition or segmentation. 
However, DL methods usually require large, annotated datasets 
to reach a critical generalization effect to ensure that the 
complexity and variation of the targeted task have been 
captured. Only if the resulting (trained) model shows this 
capability, it can be used for a successful deployment in an 
industrial quality control application. 

Often, this prerequisite is not fulfilled in the industrial context, 
due to the high costs, necessary time or a lack of expertise for 
the proper annotation of large amounts of data. In order to 
overcome the resulting issues of insufficient data, multiple 
approaches have been proposed in the literature.  
This work investigates the employability of CycleGANs to 
augment industrial datasets to build reliable QC systems and 
implements CycleGAN models for two industrial QC 
applications. In general, generative adversarial networks (GANs) 
allow a semi-supervised learning of the underlying distribution 
of a given training dataset and can be used subsequently to 
synthesize realistic samples from the learned distribution. In 
particular, the CycleGAN architecture allows to map inputs from 
one domain to another, without requiring paired samples from 
image- and annotation domains for training. Our results indicate 
that CycleGANs can learn to generate realistic samples even 
without tuning and large datasets for both use cases. Given the 
different nature of the considered domains, the results show 
further that our approach is not limited to either of the domains 
and could be applied to other datasets in a straightforward way 
to generate synthetic data as well. 
This article continues in Section 2 with a revision of approaches 
that are used to augment datasets for QC use cases and 
introduces the concept of CycleGANs. Section 3 presents the use 
cases of a vision-based defect recognition of fine blanked sheet 
metal workpieces and of a Computed Tomography (CT) 
inspection process for detecting pores in AM parts. Section 4 
presents the implementation and results of the augmented 
datasets using CycleGANs. Sections 5 and 6 conclude the article 
with a summary and future research directions.  
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2. Related work      

Comparably large annotated datasets, as they are used for 
benchmarking DL methods in ML sciences, are often not 
available with the necessary quality in the industrial context, 
either because annotating large amounts of data is an expensive 
task or because small batch sizes hinder the acquisition of a 
sufficient number of data points. In addition, industrial datasets 
are often unbalanced, e.g. since imperfect parts are usually 
produced less often than good parts, leading to a dangerous bias 
of the trained models.  
 
2.1 Data augmentation for Deep Learning 
One common way to reduce the impacts of an insufficient data 
basis (such as overfitting) is to add data augmentation to the 
model training process [5]. While not altering the data basis 
itself, classic augmentation techniques such as random flipping, 
mirroring, rotating or cropping/resizing of the input image add 
an additional amount of variation during the training process [5]. 
While preventing models from overfitting to a certain degree, 
these augmentation techniques are not capable of covering 
cases that are not present in the dataset at all. Especially in cases 
of strong class imbalances, as they are often present for the 
detection of rarely occurring defects, such augmentation 
techniques provide only limited remedy. 
Another possibility is to use a simulation of a process under 
investigation, acquiring simulated data. Especially in the field of 
computed tomography, simulations are a common way to 
investigate sources of influence on the image acquisition process 
like the parts orientation [6]. In general, these simulations are 
subject to a trade-off: Extremely precise simulations, such as 
Monte-Carlo simulations, can generate authentic images but 
suffer from long computation times, making their application in 
practice unattractive [7]. Fast simulations like ray casting, on the 
other hand, can generate images almost in real time but sacrifice 
a significant amount of precision. Although simulated data can 
be used to leverage data size issues, as shown in [8] for CT 
images of aluminium casts, require even simplified physics-
based simulations the configuration of many parameters that do 
not necessary correspond to ones of real CT systems, resulting 
in a tedious and error-prone setup process [9].  
 
2.2 Cycle-consistent GANs 
An alternative to a complete, physics-based image simulation 
are Generative Adversarial Networks (GANs). GANs are 
composed of two neural networks, a generator network G and a 
discriminator network D that are trained adversarially in a zero-
sum-game. During training, D is exposed to samples from the 
training dataset as well as samples synthesized by G and learns 
to distinguish so-called ‘real’ from ‘fake’ samples. Upon that, G 
learns a mapping from a tensor from a different domain to 
synthesize samples that resemble samples from the training 
distribution. G can be used subsequently as a neural sampler for 
data augmentation. Neufeld et al. showed for the use case of 
automotive pistons that GANs can generate realistic CT slice 
images [10]. CycleGANs [11] are an extension of the GAN 
framework that comes with multiple advantages for data 
augmentation. The vanilla GAN architecture is extended by an 
inversely directed GAN resulting in the structure depicted in 
Figure 1. CycleGAN’s training procedure relies on cycle 
consistency, transforming a given image from its domain A to the 
desired domain B and back. After training, the individual parts of 
the CycleGAN can be used independently, e.g. by using one of 
the generators to transform images from domain A to domain B 
and vice versa.  
In this study, this domain transformation capability shall be 
exploited to investigate the plausibility of generated synthetic 

images for two industrial use cases. As demonstrated in [12] for 
the case of biomedical particles, using images and binary masks 
as datasets enables the CycleGAN model to relate both domains 
to each other in a semi-supervised manner. The respective 
generator parts can then be used to either segment elements in 
the image (particles, pores, defects, etc.) or to synthesize images 
given a binary mask. Hence, by forwarding a random-generated 
(yet realistic) binary mask through the respective generator part 
of the CycleGAN, it is possible to acquire an arbitrary amount of 
new images to enrich the initial (real) image dataset.  

3. Experimental setup and data preparation 

This section introduces the investigated use cases and the 
respective datasets. Further, the implementation and training 
procedure of the CycleGAN models is outlined. 
 
3.1. Porosity determination of AM parts using CT 
AM parts are considered in an increasing number of applications 
due to their high degree of flexibility. However, QC for AM parts 
constitutes a challenge due to the small batch sizes and complex 
manufacturing process. An important characteristic influencing 
(among others) the quality of the manufactured parts is the 
degree of porosity. To determine the effective part quality, an 
accurate, but non-destructive assessment of the pore density is 
required. One common non-destructive method is the CT-based 
pore analysis. Wong et al. applied a 3D U-Net for pore 
segmentation in CT images of AM parts with promising results. 
However, they state that for a deployment of the approach more 
data is required to ensure a proper model generalization [13]. To 
investigate, how well pores of AM parts can be synthesized using 
a CycleGAN model to enrich a respective dataset, a CT scan of a 
Laser Powder Bed Fusion (LPBF) generated specimen was 
conducted for this study. Figure 2 shows the reconstructed CT 
volume on the left and an exemplary slice of the volume on the 
right. The pores formed during the AM process of the specimen 
are clearly visible as dark, mostly circular spots in the slice. The 
resulting stack of high-resolution slice images (3322 x 3325 px) 
was transformed into a more homogenous patch-dataset to 
focus the investigation on pores. Each slice of the specimen was 
cropped into quadratic, non-overlapping patches of size 300 x 
300 px, explicitly excluding patches including transition areas 
between material and background, resulting in a patch-dataset 
of over 8000 image patches in total, where each patch was 
stored individually as a distinct image. To generate ground truth 
masks of the present pores for each patch, an automated, locally 
adaptive gray value based approach was chosen to segment 
pores in the image patches. In contrast to a global threshold, this 
approach accounts the severe effect of beam hardening better, 
which can be observed in Figure 2 on the right. An example of 
such a generated ground truth mask is shown in Figure 3. Finally, 
the resulting image (patch) dataset is divided in a random, but 
fixed manner, in a train- and a test split, where 90% of the data 
is kept as the training set for the CycleGAN model. 

Figure 1: Outline of the CycleGAN architecture, consisting of two 
discriminator- and two generator pathways. The generators transform a 
given input (image) from one domain to the other, while the 
discriminators assess the plausibility of the given input. For the sake of 
clarity, the cycle consistency is shown for one pathway only. 



  

3.2. QC of sheared edges of fine blanked parts  
Fine blanking allows for the mass production of tolerance-
compliant sheet metal workpieces. The quality of fine blanked 
parts is defined by the state of the smooth cut section as 
described in VDI 2906 [14], that is reduced by the die-roll, 
tearings and the cut-off zone. To allow for the quality-driven 
optimization of fine blanking production processes, Trauth et al. 
proposed the development of a 100 % capable inline machine 
vision system that assesses the quality of fine blanking sheared 
edges and acquired an image dataset of side views of fine 
blanked parts for that purpose [3]. In a preliminary work, it was 
found that Convolutional U-Nets [15] are well suited to measure 
the height of the cut-off zone based on the dataset from [3, 16]. 
However, it was observed that examples of tearings are 
underrepresented in the dataset, eventually hampering the 
recognition of tearings with the used approach. To investigate 
this further, [16] propose to artificially increase the number of 
tearings using generative data augmentation techniques [17]. 
Herein, we took the dataset from [16] and extracted 40 unpaired 
patches of tearings and their respective masks (cf. Figure 4).  
 
3.3 Implementation and training of CycleGANs  
To account for the different image domains, two different 
architectures for the CycleGANs were used: For the generation 
of pores in CT images, a custom implementation of the original 
proposal of Zhu et al. [11] was used, modifying the input- and 
output dimensions in accordance to the gray value images. For 
the generation of tearings on sheared edges of fine blanked 
parts, a pre-trained, out-of-the box implementation provided by 
the TensorFlow framework [18] was used without further 
modifications. The trainings were performed on a NVIDIA GV100 
GPU with 32 GB of VRAM. For the training of the individual 
CycleGAN models the same approach was followed: Each model 
was trained on the respective training sets, splitting them 
further into a training- and validation part using an 80-20 ratio. 
The training split was augmented during training using random 
flipping and -cropping of the images to a size of 256 x 256 px. 
The resulting images were normalized in accordance with the 
network specifications. Finally, both models were trained for 

100 epochs, lasting in the case of the larger CT patch dataset up 
to 40 hours. During the training, the network behaviour was 
monitored on the validation split to prevent overfitting. 

4. Experimental results 

4.1. CT pore image generation   
To generate realistic synthetic CT patches of the specimen, the 
trained CycleGAN model is used in its inference mode. First, a 
simple binary mask consisting of round pores is randomly 
generated. The number of pores is randomly drawn from a 
uniform distribution between 20 and 50 pores per image. This 
mask is forwarded through the respective generator part of the 
CycleGAN model to generate a first synthetic CT-patch. In 
principle, this first image would be already sufficient to enrich 
the real dataset. However, the simple generated mask does not 
really correspond to a realistic pore segmentation, since real 
pores encounter various irregular forms. To create more realistic 
masks, the generated synthetic image is forwarded through the 
contrary generator of the CycleGAN model, whose output can 
be interpreted as a probability map for the occurrence of pores. 
After thresholding this output at a high threshold value (0.9), the 
resulting mask can be forwarded through the image-generator 
once again, generating the final synthetic CT patch. The second 
forwarding of the mask through the image-generator ensures 
that the resulting synthetic image is generated from the given 
mask, hence providing a distinct ground truth segmentation for 
the synthetic image inherently. Figure 5 shows a qualitative 
example of the complete generation pipeline, starting from a 
simple mask (top left) towards the final synthetic CT patch 
(bottom right). Visually, the obtained synthetic samples match 
the real CT patches as displayed in Figure 3 closely.   

4.2 Generation of tearings on sheared edges 
For QC of fine blanking processes, the available dataset does not 
provide a suitable amount and variance of tearings on the 
sheared edge to build a model that is able to reliably recognize 
tearings even in rare forms and positions. As a consequence, it 
was investigated whether the trained CycleGAN model can be 
utilized to augment the dataset by generating synthetic tearings. 
The synthesized tearings can subsequently be inserted into the 
original data at desired positions both in the image and mask 
domain. An advantage of the usage of a CycleGAN is the 
possibility to integrate multiple tearings with arbitrary shapes 
and positions into the data and the ground truth masks with all 
relevant quality characteristics (size, number, etc.) in the same 
step. For this initial study, a simple mechanism generating and 

Figure 5: Example of the pipeline for CT patch generation. Starting from 
a simple mask, the patch and the image are refined through a series of 
forward-operations by the trained CycleGAN model. 

Figure 2: Overview of the used specimen for pore segmentation in CT 
data. Left: 3D-view of the specimen. Right: 2D-slice. 

Figure 3: Example of a constructed binary mask for a real CT patch as 
ground truth. 

Figure 4: Examples of manually extracted tearings patches and masks 
of tearings. 



  

translating ellipses into elliptically shaped tearings using a 
trained CycleGAN model was tested. Given such a generated 
elliptical mask, the CycleGAN model generates an image patch 
containing a synthetically generated sheared edge surface, too. 
To maintain the original appearance of the target image, this 
mask of the synthesized ellipse can be multiplied with the 
synthetic patch leaving only the synthetic tearing of interest. As 
the fine blanked part is located almost at the same position in all 
images of the dataset, a region of interest was defined to paste 
the elliptical tearings at random positions on top of the sheared 
edge within that region. Figure 6 shows an example of a fine 
blanked part image before and after pasting multiple elliptical 
tearings, displaying plausible, synthetic defects. 

 
Figure 6: Original side view of a fine blanked workpiece and 
corresponding ground truth mask (left) and augmented with multiple 
synthezised elliptical tearings (right). 

5. Conclusion  

The main obstacle for the broader adoption of DL methods in 
industrial quality assurance use cases is the scarcity and quality 
of an available dataset. CycleGANs, being trained in a semi-
supervised manner, are able to generate realistic synthetic 
samples suited to augment given datasets by either full images 
directly or by altering the appearance of existing images. In this 
study, it was shown how CycleGAN models can be trained and 
used to augment datasets for two industrial QC use cases, a CT-
based pore detection application for AM parts and an image-
based quality control of fine blanked workpieces. The proposed 
method yields promising results with visually convincing sample 
quality, indicating the potential benefit of CycleGANs for 
building more reliable QC models by largely extending sparse or 
unbalanced datasets with annotated synthetic images. 
However, the exact benefit of synthetic data for QC needs to be 
determined in future work. Further, both models show no 
particular domain dependency, being thus applicable to other 
industrial image datasets as well. Concluding, CycleGANs can be 
considered as a valid method to extend the data basis both with 
synthetic samples and the corresponding ground truth masks if 
the given amount of annotated data is not sufficient. 

6. Future work 

Direct subsequent work will investigate whether the addition of  
samples synthesized by the implemented CycleGAN models to 
the use case datasets leads to higher recognition rates when 
deriving corresponding segmentation models, such as the U-Net 
from [16]. Therein, the authors plan to perform a quantitative 
analysis of the quality of generate samples and defects. In 
accordance, some parameters of the initial mask generation will 
be optimized to align the real- and synthetic data distributions 
better. Instead of synthesizing elliptically shaped tearings, 
common data augmentation techniques such as mirroring or 
resizing and other affine transformation could be used to 
generate tearings masks that resemble the actual appearance 
more tightly. For the CT use case, in a first step the dataset for 
the image synthesis will be extended by including patches from 
the transition areas as well. Following, a synthesis of complete 

CT slices directly will be investigated for more universal 
applicability. Beyond this, the authors look forward to extent the 
augmentation approach to even more sophisticated models, 
such as proposed recently in [19].  
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