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Abstract 
 
For the precise positioning of a flexible object using control, a specific point of interest is usually used as a reference point. If the 
position of this point cannot be detected directly by sensors, it is reconstructed from the positions of the sensors using a rigid body 
assumption. However, as soon as the object deforms, this assumption is no longer correct, so that the control system calculates the 
input of the actuators based on an incorrect position. This can lead to unstable system behaviour and performance losses. In this 
contribution, an observer-based approach is proposed that dynamically estimates the point of interest based on the signals from the 
sensors and the control signal from the actuators. This allows the control system to obtain correct position information even at higher 
frequencies and hence leads to an increase in performance and robustness. 
 

Position Estimation, Luenberger Observer, Flexible bodies     

1. Introduction 

    In high-precision applications a very common task is the 
precise positioning of an object with a feedback controller. Due 
to the elasticity of the object the position of a special point of 
interest (POI) is controlled.   
The POI position is measured by sensors at locations distributed 
over the object because of the use of highly sensitive 
unidirectional sensors. Hence, the system is not collocated, since 
the sensors and actuators are not at the same position [1,2]. The 
POI is reconstructed from the sensor positions by using a rigid 
body transformation, which leads to a collocated layout if the 
assumption of a rigid body holds true. As soon as first flexible 
resonances occur, the calculated POI does not match the actual 
POI. Therefore, the control cannot position the right POI and 
servo errors or even instability can occur [1,2].  
The commonly used approach is to use a lowpass-filter or notch 
filters that turn off the control as soon as flexible resonances 
occur [2]. Hence, the bandwidth of the controller is limited by 
the flexible resonance frequencies. This contribution focuses on 
an alternative approach to dynamically estimate the POI even in 
frequency regions, where the object has flexible resonances. 
Thus, a controller with a higher bandwidth can be used and the 
positioning of the object as well as disturbance rejection is 
improved. 
The dynamic estimation is based on a Luenberger observer, 
which is a basic observer suitable for systems without noise, but 
typically not used for virtual collocation. The POI is estimated by 
the observer using the sensor and actuator signals and a 
mechanical model. A model order reduction is needed to 
achieve real-time applicability.  
The observer output is used as an input for the controller, which 
can be either a full state feedback or output feedback, which 
uses only part of the estimated positions namely the POI. The 
advantage of using the whole state for feedback instead of just 
the output is that the object can be positioned with respect to 
the POI by a reduced occurrence of flexible mode shapes.  

 

Figure 1. Considered system with three masses connected via springs 
and dampers and their respective values. 

2. Problem statement 

    This section describes the basics needed to do model order 
reduction and design a Luenberger observer for the original as  
well as the reduced system to estimate the POI of a flexible 
object. 

 
2.1. Modelling & analysis of the plant  

An elastic object can be interpreted as an interconnection of 
several spring-mass-damper systems, as is also done in 
modelling using FEM. For proof of concept, a system with three 
masses is chosen in this contribution. The masses 𝑚1, 𝑚2, 𝑚3 
with their respective positions 𝑥1, 𝑥2, 𝑥3 are coupled by springs 
with stiffness 𝑘1, 𝑘2, 𝑘3 and dampers with damping 𝑑1, 𝑑2, 𝑑3. 
The lowest mass 𝑚1 is the POI, which is actuated and coupled to 
the fixed world. The third mass 𝑚3 is measured by sensors, see 
Fig. 1. Therefore, the system is not collocated. The equations of 
motion result in the system dynamics Σ𝑦 with the measured 

output 𝑦 ∈ ℝ1 , which is the position of mass 𝑚3 resp. Σ𝑧 with 
the POI output 𝑧 ∈ ℝ1, which is the position of mass 𝑚1 

 

�̇�(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) 
𝑦(𝑡) = 𝐶1𝑥(𝑡) 
𝑧(𝑡) = 𝐶2𝑥(𝑡) 

(1) 

Hereby, the states 𝑥 ∈ ℝ6 represent the positions and velocities 
of the masses and the input 𝑢 ∈ ℝ1 displays the force acting on 
mass 𝑚1. The dimensions of the dynamic matrix 𝐴, the input 
matrix 𝐵 and the output matrices 𝐶1 and 𝐶2 are accordingly. 
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If looking at system Σ𝑧, alternating resonances and 
antiresonances arise in the Bode plot. Hence, the phase of the 
input-output behaviour will always be between 0 degree and -
180 degree. From a control point of view, this is particularly 
advantageous, since in the Nyquist diagram no further 
encirclement of the critical point can occur with any amount of 
amplification by a controller [1]. Therefore, the gain margin 
(GM) is infinity. However, this holds only true for academic 
examples without sensor or actuator dynamics or delay for 
example. If these parasitic effects are considered bounded 
phase shifts can occur, but not phase jumps like for the case with 
two resonances directly after each other. 
If looking at the input-output behaviour of system Σ𝑦, three 

resonances appear directly after each other. Therefore, phase 
jumps occur, and control design is more challenging regarding 
robust stability. With the observer, designed in the next section, 
the system is virtually collocated by estimating the position of 
the POI, which can then be used for control. However, normally 
FEM are high dimensional and cannot be used in the observer. 
Hence, system Σ𝑦 is reduced by balanced truncation resulting in 

system Σ𝑟. Hereby, states that contribute only slightly to the 
transmission behaviour are neglected. The dimension of the 
reduced system is then four, such that one resonance is missing 
in the reduced system. Differences between the reduced and 
the original model occur only high-frequent. 
 
2.2. Luenberger Observer  
    A Luenberger observer estimates not measurable states of a 
system based on a mechanical model. The observer structure is 
simple and suitable for systems without or little noise. Two 
approaches are considered in this contribution: In the first 
approach system Σ𝑦 is used in the observer as model resulting 

in overall system Σfull, in the second approach the reduced 
model Σ𝑟  is used as basis for the observer design resulting in 
combined system Σred. 
If the observer uses system Σ𝑦 as model, the separation theorem 

can be used to design observer and control. Therefore, the 
controller is designed based on system Σ𝑧 or with the whole 
state 𝑥 as feedback.  
If the reduced model is used, the separation theorem is not valid 
anymore. However, the differences due to the reduction only 
occur at high frequencies. Therefore, either a low-pass filter can 
be used, or the observer can be designed especially robust to 
take the differences between plant and observer model into 
account. Hereby, the reduction method via balanced truncation 
is beneficial, since it delivers also an error bound. In this 
contribution the assumption is made that the separation 
theorem is also valid for the case with the reduced model.  
The observer gain is designed with an LQR approach to get an 
optimal gain. The input to the observer is the input 𝑢 as well as 
the output 𝑦. The output of the observer is either the estimated 
position of the POI 𝑧 or the estimated state 𝑥, whose dimension 
is dependent on the choice of the model in the observer.  
 
2.3. Control design  
    The goal of the control is the positioning of mass 𝑚1 by 
actuating  it but using the measurement of mass 𝑚3. 
For proof of concept a simple proportional controller with gain 
𝑘𝑃  is used for output-feedback, which is aggressively tuned. For 
the state feedback a LQR control approach is used to show the 
potential of the presented approach [2]. In case without 
observer output 𝑦 is fed back. In case with observer the 
estimated position of the POI 𝑧 is used for the output feedback 
and the estimated states 𝑥 for state feedback. The interesting 
output is in all cases the position of the POI 𝑧. 

3. Simulations 

    The open loop of system Σ𝑦 from the control error to the 

measured output has a GM of 58.3 dB and a phase margin of 
10.4°, while the open loop of the observer with the full system 
as model from the estimated control error of the POI to the 
estimated position of the POI has an infinitely high GM and a 
phase margin of 12.8° and with the reduced system from the 
same input to output has a GM of 60.2dB and phase margin of 
12.8°. Increasing the proportional gain 𝑘𝑃  leads to a linearly 
increasing bandwidth while linearly decreasing the gain margin. 
Therefore, with the same robustness criterions a higher 
bandwidth can be achieved by using an observer. However, it 
must be considered that the observer shall be faster than the 
controller, which limits performance.  
For comparison an impulse output disturbance is applied. As 
performance criterion, the peak amplitude (PA), which is the 
maximum position of the POI 𝑧, and the transient time (T), which 
is when the position of the POI 𝑧 is converged, are chosen, see 
Table 1. As proportional gains 90% of the values are chosen for 
which one of the systems is close to instability. If a bar appears 
in the table, the respective system is unstable. For the LQR 
approach no special tuning was done. The 𝑄- and 𝑅-matrix are 
chosen as simple unity matrices. 
The higher the gain, the less high is the PA for the observer with 
the full model. However, from a certain gain decreasing PA 
comes with an increasing T. The observer Σred performs better 
for lower gains, which is due to the mismatch of the plant Σ𝑟  
used in the observer and system Σ𝑦. The best performance can 

be achieved by a state-feedback. The PA as well as the T are low 
compared to the output feedback. 
 

Table 1 PA | T (s) of the position of the POI. 
 

System 𝑘𝑃 = 740 𝑘𝑃 = 920 𝑘𝑃
= 2000 

LQR 

PA T PA T PA T PA T 

Σ𝑦 18  221 - -  

Σred 15 163 15 910 - 1 3 

Σfull 16 313 15 192 12 427 1 3 

4. Conclusion 

    In this contribution an approach to estimate the POI of an 
elastic object based on sensor positions and the applied control 
force was presented. Firstly, the problem was stated, and the 
resulting system was analysed with a special focus on 
collocation. Afterwards, the model was reduced with respect to 
its dimension and the basics for an observer design were 
presented. With the introduced control design, simulations 
were carried out. By using an observer concept, the control 
performance is increased. Using a reduced model in the 
observer leads to slightly decreasing performance. However, if a 
state-feedback is chosen, which is enabled due to the estimation 
of the full state, a huge performance increase is achieved even 
though the controller was not tuned especially. This translates 
directly into a more precise positioning of the object and 
therefore into increased system performance. In future work, 
the results will be transferred to more realistic models and 
finally validated in experiments. 
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