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Abstract 
 
High precision positioning of mechatronic components in industrial applications requires a robust system design. Resonances within 
mechanical structures affect the stability of position control loops. To achieve high positioning bandwidth, passive damping strategies 
such as relative or tuned-mass dampers are used. Passive dampers are often made of viscoelastic materials such as elastomers, which 
are sensitive to temperature and vary in manufacturing tolerances. Due to the large uncertainties of viscoelastic materials system 
performance needs to be guaranteed for all possible configurations. In this contribution we present the use of the µ-analysis for 
viscoelastic materials to evaluate robust system performance for geometrical, material and temperature tolerances.  
 
The system performance can be evaluated by analyzing the sensitivity function of the closed loop system within the µ-analysis. The 
used dynamic model is based on a finite element model, where viscoelastic damper models are added by a feedback loop. Tolerances 
such as variations in Young’s modulus are also represented by a feedback loop, typical structure for the µ-analysis. The frequency 
dependent Young’s modulus of viscoelastic materials is approximated by a linear transfer function based on a dynamic mechanical 
analysis.  For elastomers the Young’s modulus mainly varies in amplitude and shifts in frequency due to temperature. There is a direct 
relation between temperature change and frequency shift of the Young’s modulus. Considering the temperature change instead of 
a stiffness change reduces conservatism in the performance analysis. For example, using several elastomers and considering only 
stiffness variations leads to the possibility that one elastomer sees an increase and the other a decrease in stiffness as a worst-case 
scenario, a non-physical behavior. µ-analysis with reduced conservatism improves design costs of mechatronic components and gives 
a robustness guarantee instead of a time-consuming Monte-Carlo simulation. 
 

Robust control, Viscoelastic material, µ-Analysis    

 

1. Introduction 

Neglected component tolerances in system design of high 
precision mechatronic systems can lead to system performance 
losses during qualification of series production. Consequently, 
significant costs occur for solving the out of specification 
situation. Therefore, a robust design of mechatronic systems is 
necessary, where the tolerance effects on system performance 
are investigated. For example in high precision positioning 
systems passive dampers are used to prevent instabilities of the 
control loop due to undamped structural dynamics. These 
dampers are often made of viscoelastic materials, which are 
strongly sensitive to temperature and the manufacturing 
process such as geometry and the material properties. 
Occasionally, a Monte-Carlo simulation is used for investigating 
the system performance with tolerances. However, in high 
precision mechatronic systems there are several tolerances, 
where you cannot guarantee a robust performance within a 
Monte-Carlo simulation in finite time due to the large number of 
combinations. For that reason, we use the μ-analysis [1], an 
optimization-based approach to investigate robust performance 
of a controlled system. This approach can guarantee robustness 
for a large number of tolerances. For that reason, we present in 
this paper the use of the μ-analysis for large mechanical 
structures with viscoelastic damper materials. The temperature, 
geometrical and material tolerances are considered within the 
μ-analysis.  
 

The paper is organized as follows: First, we show a structural 
dynamic model generation out of a finite element solver. Then, 
we describe how to add viscoelastic damping to that model. A 
dynamic model for the Young’s modulus is derived in the time 
domain, where a description of the temperature, geometrical 
and material tolerances is included. Based on the parametric 
model an overall state-space model is presented for the use in 
the μ-analysis. Then, conditions for robust performance based 
on the μ-analysis are defined. Finally, the approach is applied to 
a three mass-spring example. 

2. Viscoelastic damper modeling 

Due to the small movements in high precision position control 
the mechanics can be described by the linear elasticity theory. 
The corresponding analytical partial differential equations are 
approximated by the finite element method (FEM). In order to 
analyze the dynamic behavior of the viscoelastic dampers, we 
extract a state space description from the FE solvers such as MSC 
Nastran or Ansys. Because of the large number of degree of 
freedoms (DOF) only the information of the modal analysis is 
used. To also consider viscous dampers, the normalization of the 
eigenvectors needs to be considered. In a FE-solver the modal 
analysis is performed by the created model based on the mass 
𝑀, stiffness 𝐾 and viscous damping 𝐷 matricesThe equations of 
motion can be represented by [2] 
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where 𝑥FE is the displacement and 𝑓 the force at each node in 
all considered DOFs. The ordinary differential equations can be 
transformed into modal space by 𝑧FE = 𝑄𝑞FE, where Q contains 
the eigenvectors of eq. (1). Due to symmetry eigenvectors are 

normalized to 𝑄T�̃�𝑄 = 𝐼, where 𝐼 corresponds to the unity 
matrix. Considering this normalization in the modal analysis of 
the FE-solver a state space in modal representation can be 
generated based on calculated eigenvectors within the FE-solver 

𝛴FE: �̇�FE = −𝑄T𝐾𝑄⏟  
𝛬

𝑞FE + 𝑄
T𝑓

𝑧FE = 𝑄𝑞FE,
                        (2) 

where 𝑞FE denotes the state in modal coordinates. Due to the 
frequency-dependent Young’s modulus of viscoelastic materials 
the damping behavior cannot be considered in the modal 
analysis. However, the damping can be added by a dynamical 
model in a feedback loop afterwards, which is mechanically 
comparable to a parallel frequency-dependent spring. For that 
reason, the in- and outputs (IOs) of the 𝛴FE state space are 
modified by only selecting the IOs with respect to the 
viscoelastic dampers and to the position control 

[
𝑥M
𝑥VE

] = [
𝐶M
𝐶VE

] 𝑧FE

𝑓 = [𝐵A 𝐵VE] [
𝑓A
𝑓VE
] ,

                      (3) 

where 𝐶M, 𝐶VE selects the displacements and 𝐹A, 𝐹viscIO the 
forces for the position control and the viscoelastic damper 
element nodes, respectively. The FE model already contains the 
stiffness of the viscoelastic damper. Therefore, only the stiffness 
change over frequency is described by an additional force to the 
FE model 

𝐟VE(𝑠) = (
𝐞(𝑠)

𝐞(0)
− 1)𝐾VE 𝐱VE(𝑠),                      (4) 

where 𝑠 represents the variable of the Laplace transformation, 
bold letters correspond to the laplace transformed variable and 
𝐾VE is the stiffness matrix of the viscoelastic damper. The 
viscoelastic material behavior is described by a frequency-
dependent Young’s modulus 𝑒. Based on the introduced 
equations an overall state space 𝛴VE can be derived 

𝛴VE: �̇�FE = −(𝛬 + 𝑄T𝐵VE𝐾VE𝐶VE𝑄)𝑞FE

+𝑄T𝐵A𝑓A +
1

𝐞(0)
𝑄T𝐵VE𝑓e

𝑥M = 𝐶M𝑄𝑞FE
𝑥e = 𝐾VE𝐶VE𝑄 𝑞FE.

                                   (5) 

in Figure 1 the feedback loop with respect to the Young’s 
modulus is represented. 

 
Figure 1. Considering viscoelastic materials in dynamic models by a 
feedback of a frequency-dependent Young’s modulus. 

The dynamic behavior of the Young’s modulus of the viscoelastic 
material is often determined by a FRF measurement, also known 
as the dynamic mechanical analysis (DMA). In order to analyze 
the impact on the position control, a dynamic model is fitted into 
the measurement data. The number of poles and zeros of the 

transfer functions are chosen to be equal, to obtain a proper 
transfer function. Here, the fitting can also be interpreted as a 
parameter estimation of the generalized Maxwell model [3], a 
physical model. Then, the frequency-dependent Young’s 
modulus is described by 

𝐞(𝑠) = 𝑔∏
(𝑠+𝑧𝑖)

(𝑠+𝑝𝑖)
𝑛−1
𝑖=0 ,                                    (6) 

where 𝑝𝑖 and 𝑧𝑖 describe the poles and zeros, and 𝑔 a scaling 
factor. Moreover, the Young’s modulus of viscoelastic materials 
significantly depends on temperature 𝑇, which can be modeled 
by frequency scaling of the dynamic Young’s modulus. For 
viscoelastic material the Williams-Landel Ferry model is a state 
of the art approach for shifting frequencies of the Young’s 
modulus [4] 

𝐞T(𝑗𝜔, 𝑇) = 𝐞(𝑗𝑎(𝑇)𝜔)

log10(𝑎) = −
𝑐1(𝑇−𝑇0)

𝑐2+(𝑇−𝑇0)
,
                                  (7) 

where 𝑎T is the frequency scaling factor, 𝑐1, 𝑐2 are viscoelastic 
material parameters, 𝑇0 is the reference temperature of the 
measured Young’s modulus FRF and 𝑗 is the complex number. In 
order to study the temperature-dependent control 
performance, we need a dynamic model, that represents the 
frequency shift as in eq. (7). A frequency shift can be realized by 
scaling the poles and zeros of the Young’s modulus in eq. (6). For 
the 𝜇-analysis the Young’s modulus is described in a modal state 
space representation 
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𝑇
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           (8) 

where 𝑟e describes the residual based on the zeros and poles of 
the transfer function. Now, the system matrix and the residuals 
are scaled to 

�̇�e = 𝑎(𝑇)𝐴e𝑞e + 𝑏e𝑥e
𝑓𝑒 = −𝑎(𝑇)𝑔𝑟e

T𝑞e + 𝑔𝑥e.
                              (9) 

 
2.1. Uncertainty modeling 

In this paper the robust system performance of a position 
controlled system is analyzed by the 𝜇-analysis. In order to use 
the corresponding framework, uncertainties are represented in 
a feedback structure as depicted in Figure 2. The mechanical 
system from actuator forces to position measurements, also 
called plant, are combined with two feedback loops for the 
position controller and the uncertainties. The 𝛥 block represents 
the tolerances of the viscoelastic material, where we consider 
structured uncertainties, diagonal blocks for each tolerance 
scaled to −1. . .1. Plant and Controller combined to the nominal 
system 𝛴𝑁. 



  

 

Figure 2. Generalized plant representation of the mechatronic system 
for the µ-analysis framework. 

The uncertain parameters of the viscoelastic Young’s modulus 
need to be described in a relative representation to receive a 
uncertainty between -1 and 1. For the temperature we can 
derive the interval of the shift factor by 

𝑎𝛥 = 𝑎0(1 + 𝛥T𝑎r), 𝛥T = −1. . .1

𝑎0 =
𝑎(𝑇max)+𝑎(𝑇min)

2

𝑎r =
𝑎(𝑇max)−𝑎(𝑇min)

𝑎(𝑇max)+𝑎(𝑇min)
,

                 (10) 

where 𝑎0 corresponds to the mean value of the interval, 𝑎r 
scales uncertainty feedback to -1...1 and 𝑇min, 𝑇max are the 
minimum and maximum temperature of the tolerances. The 
geometrical and material uncertainties are considered in the 
gain factor of the Young’s modulus 

𝑔𝛥 = 𝑔0(1 + 𝛥g𝑔r),                                       (11) 

where 𝑔0 corresponds to the center of the interval and 𝑔𝑟  the 
relative change of the scaling factor. Based on the relative 
representation the state space of the Young’s modulus can be 
formulated in a structure, where the introduced uncertainties 
are described within a feedback loop 

�̇�e = 𝑎0𝐴e𝑞e + 𝑏e𝑥e + [𝐼 0]𝑢T
𝑓e = −𝑎0𝑔0𝑟e

T𝑞e + 𝑔0𝑥e + [0 𝑔0𝐼]𝑢T + 𝑔r𝑢g

𝑦T = [
𝑎r𝑎0𝐴e
−𝑎0𝑟e

T ] 𝑞e

𝑢T = 𝛥T𝑦T
𝑦g = −𝑎0𝑔0𝑟e

T𝑞e + 𝑔0𝑥e + [0 𝑔0𝐼]𝑢T
𝑢g = 𝛥g𝑦g.

       (12) 

Combining eq. (3) and eq. (6) results in an overall state space of 
the mechatronic system with uncertainties 𝛴U, which can be 
used for the 𝜇-analysis. The nominal model is based on the 
closed-loop system without uncertainties. A typical position 
controller in mechantronic system is based on a proportional-
integral-derivative (PID) controller 𝐜(𝑠). The feedback law is 
defined by 

𝐟A(𝑠) = 𝐜(𝑠)𝐱error(𝑠) = 𝐜(𝑠) (𝐱M(𝑠) − 𝐱ref(𝑠))⏟            
𝐱error(𝑠)

,
       (13) 

𝑥ref defines the position reference. A parallel PID structure is 
used and for the derivative part a pole is added to not amplify 
high frequency flexible modes, which can lead to instabilities. 
Then, we obaint the following controller transfer function 

𝐜(𝑠) =
𝐟A(𝑠)

𝐱error(𝑠)
= 𝑘P + 𝑘I

1

𝑠
+ 𝑘D𝑠

1

1+𝜏d𝑠
,                        (14) 

where 𝑘P, 𝑘I and 𝑘D are the controller gains and 𝜏d the roll-off 
time constant for the derivative part. In order to combine the 
controller in a state space model, the transfer function is 
reformulated in the time domain by 

𝛴K: [
�̇�1
�̇�2
] = [

0 0

−
𝑘P

𝜏d
2 −

1

𝜏d

] [
𝑧1
𝑧2
] + [

1

− (
𝑘P

𝜏d
+
𝑘D

𝜏d
2)
] 𝑥error

𝑓A = [(𝑘I +
𝑘P

𝜏d
) 1] [

𝑧1
𝑧2
] + (𝑘P +

𝑘D

𝜏d
) 𝑥error.

      (15) 

From eq. (12), eq. (13) and eq. (15) we obtain an overall state 
space for our nominal model 𝛴N with in- and outputs for the 
uncertainties. 

2.2. Robustness analysis 

For analyzing the robust performance, we use the 𝜇-analysis, 
a frequency domain approach. Therefore, from the 𝛴N state 
space a transfer function 𝐍(𝑠) = 𝐶N(𝑠𝐼 − 𝐴)

−1𝐵N +𝐷N is 
determined. The transfer matrix can be divided into the 
following representation 

[
𝐲𝛥

𝐱error
] = [

𝐍11(𝑠) 𝐍11(𝑠)

𝐍21(𝑠) 𝐍22(𝑠)
] [
𝐮𝛥
𝐱ref

] ,                      (16) 

where 𝐲𝛥,𝐮𝛥 are the in- and outputs for the uncertainties. For 
studying the robust performance, the output sensitivity is used, 
the transfer from reference to servo error signal, a quantity for 
the distance from open-loop function to the critical point of the 
Nyquist stability criterion. The structured singular value, also 
known as 𝜇 is defined by  

𝜇(𝐌) =
1

inf{𝜎max(𝛥)|det(𝐼−𝐌𝛥)=0}
,                           (17) 

where 𝜎max denotes the maximum singular value of the block 
matrix 𝛥. If the nominal system is stable and 𝜇(𝐍11) < 1, the 
system is robust stable. Performance criteria can be considered 
by uncertainties as well. To fulfill feedback values < 1, the 
corresponding sensitivity outputs need to be scaled. As a 
performance criterion we claim a maximum output sensitivity 

𝑆𝑚𝑎𝑥 Therefore, we get a scaling factor 𝑊o =
1

𝑆𝑚𝑎𝑥
. For the 𝜇-

analysis a new transfer matrix is defined by 

𝐎(𝑠) = [
𝐍11(𝑠) 𝐍11(𝑠)

𝐍21(𝑠) 𝑊o𝐍22(𝑠)
]                         (18) 

Robust performance is achieved, if 𝜇(𝐎) < 1. 

3. Example      

 

The robustness analysis of viscoelastic materials for 
temperature, geometrical and material tolerances is applied for 
a three mass-spring system to illustrate the method. In Figure 3 
the spring-mass system is depicted. A mass 𝑚 is controlled by a 
actuator with a clearly smaller mass 𝑚A and stiffness 𝑘A. Then, 
the corresponding resonance frequency can be approximated by 

𝜔A
2 =

𝑘A

𝑚A
. The resonance frequency is significantly higher than 

the cross-over frequency of the control loop, but it causes 
instabilities without damping.  



  

 

 

Figure 3. Depiction of a three mass-spring system example to analyze 
robust performance with viscoelastic materials. 

For that reason, the actuator is damped by a tuned-mass-
damper (TMD), which is modeled by a mass 𝑚TMD and a 
frequency dependent stiffness 𝐤TMD(𝑠). The TMD mass is also 
by a factor ten smaller and the stiffness is designed in a way that 
the actuator resonance is sufficient damped. The viscoelastic 
damping effect is modeled by the frequency dependent Young’s 
modulus. The corresponding stiffness and mass matrix of the 
example is described in the representation from eq. (1), where 
the frequency-dependent stiffness 𝐤TMD is chosen at 0 Hz. 
Moreover, the used normalized Young’s modulus for the 
frequency dependency is depicted in Figure 4. A transfer 
function with three poles and zero is fitted into a data set of an 
elastomer by the least square approach.  

 
Figure 4. Comparison of the measured Young’s modulus of an elastomer 
and the fitted transfer function. There is a significant deviation between 
1 Hz and 10 Hz due to the limited number of poles and zeros to three. In 
our example the interesting damping frequency is larger 100 Hz.  

The position controller is tuned for a cross-over frequency of 160 
Hz. For the geometrical and material tolerances we assume 20 
% deviation at the maximum. Moreover, two temperature 
intervals for a robust (22 °C … 27 °C) and non-robust case 
 (22 °C ... 37 °C) are considered. The calculated 𝜇-values over 
frequency are depicted in Figure 5. For the robust case the µ-
value is clearly smaller than one. Worst case parameters are at 
20 % for geometrical and material deviations and at 27 °C. For 
an interval 22 °C … 37 °C the robust performance is violated 
around the resonance frequency of the actuator, µ-values 
clearly larger 1. The worst-case parameters are at -20% 
geometrical and material deviations, and at 37 °C.  As a result, 
the stiffness for the TMD is as weak as possible for the non-
robust case. In Figure 6 impact on output sensitivities are 
depicted of the nominal, non-robust and robust case.  

4. Summary 

In this paper a method is shown to analyze robust performance 
of mechatronic systems with viscoelastic damper materials. A  

 
Figure 5. Example results of the μ-analysis for a non-robust and robust 
performance. An interval of the μ value based on lower and upper bound 
are given due to complex calculation of μ. Increasing the temperature 
tolerances leads to a performance violation. 

 
Figure 6. Representation of the  5 dB robust performance criterion, the 
output sensitivity with worst case parameters, for the nominal, robust 
and non robust case.  

dynamic model is fitted into measured frequency response 
functions of the Young’s modulus. The dynamics model can be 
adapted to different temperatures and geometrical and material 
tolerances. In order to study the impact on position control of 
mechatronic system, the robustness can be investigated by the 
µ-analysis. The presented method allows an analysis of large FE 
models with viscoelastic damping materials. This cannot be 
considered in the FE-solvers by default. Moreover, temperature 
effects can be covered within the robustness analysis by taking 
in account of the frequency-dependent effect of the Young’s 
modulus. Based on that conservatism can be taken out from the 
µ-analysis by using temperature tolerances instead of pure 
stiffness variation. 
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