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Abstract 
 
Customer demands for piezo positioning systems focus on higher closed-loop bandwidths and increased precision. However, poorly 
damped resonance frequencies often limit achievable bandwidths. Linear control limitations, such as Bode’s gain-phase relation and 
the waterbed effect, constrain controller performance. Recent research suggests that nonlinear control methods, like reset control, 
can overcome these limitations. The "Constant in Gain – Lead in Phase (CgLp)" structure offers a lead in phase without sacrificing 
gain, unlike its linear counterpart. This work aims to leverage this property to improve closed-loop bandwidth, steady-state tracking, 
and disturbance rejection while maintaining the transient properties of the systems. 
The controllers have been implemented and tested on a one-degree-of-freedom precision positioning stage with multiple dominant 
resonance frequencies. The CgLp element is used as an extension to the linear control structure in series with a proportional-integral 
(PI) tracking controller. To dampen the first dominant resonance frequency, a Positive Position Feedback (PPF) controller has been 
used in the inner loop. The controllers have been optimized solely based on the describing function (DF) analysis of the system using 
a Particle Swarm Optimization (PSO) algorithm. It has been shown that when properly setting the CgLp parameters, the effect of 
higher-order harmonics introduced by the resets is negligible, and the first-order DF approximation delivers an accurate frequency 
domain analysis. The results have shown that by using the additional CgLp element-based structure, the closed-loop bandwidth could 
be improved by 60%, and the overshoot could be kept below 5%. Additionally, steady-state tracking performance and disturbance 
rejection capabilities could be significantly improved. 

 

1. Introduction   

 The current customer demands for nanopositioning systems 
such as piezo actuators go towards even higher closed loop 
bandwidths, increased precision and disturbance rejection 
capabilities. However, the maximum achievable bandwidths of 
these systems are often limited by one or multiple poorly 
damped resonance frequencies. The maximum achievable 
closed loop bandwidth of these systems is typically below the 
value of the first resonance frequency [1]. Additionally, 
fundamental limitations of linear control such as Bode’s gain 
phase relation and the waterbed effect limit the achievable 
performance of these controllers.  

Recent work has shown that nonlinear control strategies such 
as reset control can be used to overcome these limitations and 
improve the tracking performance of these systems [2]. Two of 
the most promising reset elements are called “Constant in gain 
– Lead in phase (CgLp)” and “Continuous Reset – Constant in gain 
– Lead in phase (CRCgLp)” and are typically used as an addition 
to a linear tracking controller [3]. In contrast to linear 
controllers, these elements are able to provide a lead in phase 
while having an almost constant gain. With linear controllers, 
Bode’s phase gain relation for minimum phase systems states 
that a lead in phase always coincides with an increase in gain. 
Hence, if the robustness of the system has to be improved by for 
instance adding phase in the crossover region using a lead 
element, that also comes along with a decreased slope of the 
loop gain at the crossover frequency. This is not desired since a 
high gain at low frequencies and low gain at high frequencies 
with a steep crossover is desired for a proper tracking 

performance, according to the loop shaping constraints. With 
the previously mentioned CgLp and CRCgLp elements, this 
increase in gain can be avoided. Therefore, this additional phase 
can be used to either increase the phase margin of the system 
while maintaining a similar tracking performance or to increase 
the loop gain of the system compared to the linear case without 
affecting the stability margins according to the describing 
function (DF) analysis. 

There are various methods for analyzing reset control systems 
or in general nonlinear controllers in the frequency domain. 
However, to make them an appropiate choice for industrial 
applications, the tuning and optimization process should be 
intuitive and take as little time as possible. One of the most well 
known methods is DF analysis of the reset control system which 
is based on the first order Fourier series expansion of the 
elements output [4]. Even though higher order harmonics of the 
signal are neglected with this approach, it can deliver an 
accurate estimation of the performance of the system, when it 
is ensured that these higher order harmonics are low enough in 
magnitude. This paper validates this approach using a single 
degree of freedom nanopositioning system. The CgLp and 
CRCgLp element based control structures are adjusted manually 
to ensure that the mentioned higher order harmonics are low 
enough in magnitude and the remaining parts of the linear 
control structure is optimized using the closed loop frequency 
response of the system. For a fair comparison, the reset 
controller based structures are also compared to the optimized 
linear controllers in terms of closed loop bandwidth, steady-
state tracking performance and disturbance rejection 
capabilities.  
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Section 2 of this paper introduces the reset control 
fundamentals including an overview of the CgLp and CRCgLp 
elements. In section 3, the linear control structure is introduced. 
The tuning and optimization procedure as well as the results are 
shown and compared in section 4. Finally, section 5 concludes 
the paper and gives recommendations for future work.  

2. Reset Control    

This section introduces the relevant reset control essentials 
ranging from the basic state-space description of the reset 
controllers to the relevant frequency domain analysis tools. The 
general state-space description of the most basic reset element 
is given by [4]: 

 

{

𝑥r⃗⃗  ̇⃗(𝑡) = 𝑨r𝑥r⃗⃗  ⃗(𝑡) + 𝑩r𝑒(𝑡)     if 𝑒(𝑡) ≠ 0

𝑥r⃗⃗  ⃗(𝑡
+) = 𝑨𝜌𝑥r⃗⃗  ⃗(𝑡)                     if 𝑒(𝑡) = 0

𝑢(𝑡) = 𝑪r𝑥r⃗⃗  ⃗(𝑡) + 𝑫r𝑒(𝑡),                           

 

 

where 𝑨r, 𝑩r, 𝑪r and 𝑫r are the base-linear state-space 
matrices of the reset control system and 𝑨𝜌 is the so called reset 

matrix which determines the portion of reset and is given by: 

𝑨𝜌 = [
𝑨𝜌r

𝟎

𝟎 𝑰
], 

with 𝑨𝜌r
= 𝑑𝑖𝑎𝑔(𝛾1, 𝛾2, … , 𝛾𝑛𝑟

) and 𝛾𝑖 ∈ [−1, 1] being the 

resetting part of the reset matrix. The identity matrix can hence 
be used for states that should not reset. When looking at the 
state-space description above, it can be seen that a 𝛾-value of 
zero represents a full reset of the state and that negative values 
even negate the states.  

In figure 1, the output of this general reset element is shown 
as well as the first order Describing Function. Here, the clear 
advantage of the reset control element can be seen by taking a 
look at the phase difference between the input and output 
signal, which in this case is in fact only -38° instead of the -90° of 
the standard linear integrator. 

 

 
 

The set of equations to analytically calculate the first order 
describing function and the higher order harmonics of the 
output is given in [4]. As already mentioned, these higher order 
harmonics are generally not desired, especially in the low 
frequency region. There are also other methods for analyzing 
reset control systems in the frequency domain such as the so 
called pseudo-sensitivity method [2]. Whereas these methods 
are considered to be more accurate than the DF-based analysis, 
the calcution requires significantly more time and hence limits 
their industrial applicability. In addition to that, the reset control 
system can be designed such that the DF-based analysis delivers 
an accurate estimation of the frequency response.  

To make use of the phase advantages of the reset controller 
only in the appropiate frequency range, which is typically the 
open loop crossover region, the CgLp and CRCgLp elements have 
been introduced. 

An overview of the CgLp and CRCgLp elements can be seen in 
figure 2.  

 

 
 
The CgLp element consists of a so called “First order reset 
element (FORE)” [5] which is essentially the nonlinear equivalent 
of a linear first order lowpass filter [4]. Similar to the previously 
introduced reset integrator, this element shows a reduced phase 
lag. In addition to that, a lead filter is located behind this FORE 
element. The advantage of this combination is that the gains of 
these elements almost exactly cancel but due to the reduced 
phase lag, a total lead in phase is obtained, which can not be 
achieved with linear controllers. The CRCgLp element contains 
an additional lead filter in front of the CgLp element and a lag 
filter behind it. Due to the lag filter behind the reset element, 
the influence of the higher order harmonics can be reduced 
compared the CgLp element. In addition to that, the lead filter 
changes the reset condition to [4]:  

�̇�(𝑡)

𝜔l
+ 𝑒(𝑡) = 0 

The lead and lag filters do not influence the DF of the open loop 
if 𝜔ℎ ≫ 𝜔r and 𝜔ℎ ≫ 𝜔c. Another interesting property of this 
lead element is that a reduction of the ratio 𝜔l/𝜔c decreases the 
overshoot of the system, which can be used to optimize the 
transient response of the system. However, a reduction of this 
ratio also leads to a longer settling time. 
 

 
 
Figure 3 shows the frequency response of the 1st and 3rd order 

harmonics of an example CgLp and CRCgLp element. The 
constant gain of the two elements can clearly be seen up until a 
frequency which is far above the desired control bandwidth. 
Similarly, the additional phase lead of the elements is visible 
which starts approximately at the frequency 𝜔r. When taking a 
look at the magnitude of the 3rd order harmonics, it can be seen 

Figure 1. Output of a general reset element and the 1st order Describing 
Function of the output  

Figure 2. Structure of the CgLp and CRCgLp elements [3] (The arrow 
indicates the output of the filter reset to 𝛾) 

Figure 3. High Order Sinusoidal Inout Describing function (HOSIDF) 
comparison between a CgLp and CRCgLp element.  



  

that the magnitude is significantly lower for the CRCgLp element 
due to the additional lag filter after the CgLp element.  
 
3. Linear control structure 

 
As already mentioned before, the CgLp and CRCgLp structures 

are typically used as an addition to the linear control structure. 
For the tracking controller, a proportional-integral (PI) controller 
has been used with an integrator cut-off well before the 
crossover frequency. This prevents the phase lag of the 
integrator from influencing the phase in the crossover region.  

To effectively attenuate the resonance frequency of the 
system, an active damping control scheme has been 
implemented. Therefore, a Positive Position Feedback (PPF) 
controller has been used, which is given by [6]: 

𝐶ppf(𝑠) =  
𝛤

𝑠2 + 2𝜁d𝜔d𝑠 + 𝜔d
2 

where 𝛤 is the gain of the PPF controller, 𝜁d the damping ratio 
and 𝜔d is cut-off frequency. An overview of the complete 
control scheme can be seen in figure 4.  

 

 
 

During initial optimizations it has been observed that the PPF 
damping controller was not sufficient to effectively dampen 
higher frequency resonance modes. Hence, a notch filter has 
been used in the inner loop as well. 
 
4. Results 
 

The results obtained with a single degree of freedom piezo 
actuator will be shown in this section. This includes an 
introduction to the system as well as the optimization algorithm 
that has been used to tune the controllers.  
 
4.1. Plant model 
 

The piezo actuator that has been used in this work has multiple 
weakly damped resonance frequencies ranging from 125 Hz to 
350 Hz. The frequency response measurement (solid line) as well 
as the frequency response of an identified model of the system 
(dashed line) can be seen in figure 5.   

 

 
 

4.2. Optimization algorithm  
 

To optimize the control structure in the frequency domain, a 
Particle Swarm Optimization (PSO) algorithm has been used [7]. 
The cost function that has been used is based on the closed loop 
frequency response of the system and is given by: 

𝐽T = ∫ 𝑊(𝜔)||𝑇(𝑗𝜔)| − |𝑇ideal(𝑗𝜔)||𝑑𝜔
𝜔max

𝜔min

 

where 𝑇(𝑗𝜔) is the complementary sensitivity function obtained 
with the parameter set and 𝑇ideal(𝑗𝜔) is a targeted closed loop 
frequency response that is set beforehand. The frequency 
dependent weighting function 𝑊(𝜔) has been set to: 

𝑊(𝜔) =
1

√𝜔4
 

to ensure that low frequency deviations of the complementary 
sensitivity function are penalized more than high frequency 
ones.  

Furthermore, a constraint for the sensitivity function has been 
implemented which is essentially just an upper limit for the 
sensitivities. Since the peak sensitivity is a measure for the 
robustness of the system, this parameter could be adjusted 
according to the desired robustness properties of the system. In 
this work a peak sensitivity of 3.5 dB has been used.  

To evaluate the stability of the systems during the 
optimizations, the so-called Nyquist Stability Vector [8] has been 
used. To reduce the required time for the optimization, the 
stability has been checked first, such that the cost function has 
only been evaluated for stable systems.  
 
4.3. Measurement results 
 

For a fair comparison, the control structure which is solely 
based on the linear PI and PPF controllers is optimized as well 
using the PSO algorithm. To evaluate the performance of the 
optimized controllers in terms of closed loop bandwidth, steady-
state tracking performance and disturbance rejection 
capabilities, the system has been excited by sinusoidal inputs for 
frequencies between 1 Hz and 1 kHz and the steady-state inputs 
and outputs have been recorded. To ensure that the higher 
order harmonics introduced by the reset controller are 
significantly lower in magnitude than the first harmonic, such 
that the DF analysis delivers an accurate analysis of the 
frequency response, the reset control parameters have been 
fixed and tuned prior to the optimization. Since it could be 
expected that higher open loop crossover frequencies can be 
achieved with the CgLp and CRCgLp elements, 𝜔𝑟  has been set 
to 100 Hz, which is slightly larger than the achievable crossover 
for the linear control structure only. This frequency determines 
the start of the phase lead which is desirable in the crossover 
region of the system. The reset parameter has been set to 𝛾 =
0.4 for the CgLp element and 𝛾 = 0.15 for the CRCgLp. The 
lower value for the CRCgLp element is possible since higher 
order harmonics are further reduced to the additional lag filter 
behind the CgLp element. The two taming pole frequencies have 
been set to 𝜔𝑓 = 𝜔ℎ = 2𝜋/(10𝑇s) such that they do not 

interfere with the relevant dynamics. The cut-off frequency of 
the lead and lag filter 𝜔𝑙  when using the CRCgLp element has 
been set to 60 Hz. Hence, the only parameters left to optimize 
using the PSO algorithm were the PI control and PPF controller 
parameters: 𝛤, 𝜁d, 𝜔d, 𝑘p and 𝜔i. 

Figure 6 shows the closed loop response comparison of the 
steady-state outputs of the systems for the linear controllers 
only (PI-PPF) and the CgLp and CRCgLp controller-based 
structures. The CgLp and CRCgLp controllers significantly 
outperform the linear control structure in terms of the achieved 
closed loop bandwidths of the systems.  

Figure 4. Overview of the control structure.  

Figure 5. Frequency response of the measured and identified system   



  

In figure 7 the steady-state peak to peak error values for the 
chosen frequency range is shown for the three control 
structures which is essentially the sensitivity response of the 
systems. The lower sensitivity in the low frequency region 
indicates a superior steady-state tracking performance of the 
CgLp and CRCgLp based control structures compared to the 
linear structure. This is due to the higher loop gains that could 
be achieved because of the additional phase the reset elements 
can provide. The higher loop gains also indicate an improved 
disturbance rejection capability of the reset controller-based 
systems. 

  

 

 
 

A step response comparison for the three control structures 
can be seen in figure 8. The higher loop gains and crossover 
frequencies of the two reset controller optimization results can 
clearly be seen in the reduced rise time of the response. In 
addition to that the overshoot of the CgLp and CRCgLp 
structures is reduced compared to the linear control structure 
only and could be reduced to 5 % for the CRCgLp based 
controller.  

5. Conclusion    

In this paper, a DF analysis based frequency domain 
optimization method has been investigated for the usage with a 
single degree of freedom nanopositioning stage. The reset 
control parameters have been tuned prior to the optimization 
process to ensure the exclusive use of the DF analysis of the 
system delivers an accurate estimation of the system’s 
frequency response and to reduce the required time for time for 
the optimization algorithm to converge. The results have shown 
a significant improvement of the closed loop bandwidth, the 
steady-state tracking performance and disturbance rejection 
capabilities of the systems based on the CgLp and CRCgLp 
elements. The closed loop bandwidth of the system with the 
CRCgLp element has improved by 60 % and the overshoot in the 
step response was kept below 5 %. 

Given the current customer demands of higher closed loop 
bandwidths and an improved steady-state tracking performance 
and disturbance rejection capabilities, linear control reaches its 
limits at some point. This paper has shown that reset control can 
help to overcome these limitations using a DF-based analysis of 
the system. Due to the optimization in the frequency domain, 
not much time is required for the algorithm to converge, which 
makes it a promising procedure for industrial usage. Further 
research could investigate an improvement of the linear control 
structure which does not require the usage of the additional 
notch filter. In addition to that, more intuitive design methods 
for the initial design of the linear controller could be developed.  
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Figure 6. Closed loop frequency response of the three controllers.    

Figure 7. Sensitivity comparison of the three controllers.    

Figure 8. Step response comparison of the three controllers.  


