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Abstract 

Titanium alloy, one of the representative difficult-to-machine materials, is light, has high high-temperature strength, and has 
excellent mechanical properties, so it is widely applied to major parts such as aviation and space. However, due to low thermal 
conductivity during cutting, a lot of heat is generated, so tool life is short and tool management is difficult. When machining titanium 
alloy, it is important to detect the condition of the tool and determine the appropriate replacement time when machining with one 
tool for a long time or when a large amount of machining is required. To monitor a tool during machining, it is necessary to measure 
signals generated during machining and find a way to determine the relationship between the condition of the tool and the machining 
signal. For this, it is useful to apply an AI-based analysis model. In this paper, a machining experiment of titanium alloy was conducted 
using an end mill tool with a diameter of 16mm to obtain the necessary data, and a monitoring system was created by attaching an 
acceleration sensor to the main axis of the machining equipment. In addition, tool wear was periodically measured using an optical 
microscope and used for data collection and tool condition analysis. In order to apply it to the AI-based analysis model, the signal 
from the acceleration sensor generated during processing was obtained as time series data. The acquired time series data was directly 
applied to an AI model combining CNN, LSTM, and MLP (Multi-Layer Perceptron) to train an AI model for multi-class classification 
that determines tool status according to signals generated during machining. Tool monitoring during the titanium alloy end mill 
process was performed and evaluated through an AI model learned using the acquired time series data. 
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1. Introduction

Drilling and milling processes are among the oldest machining 
process that are still vastly practiced in the recent manufacturing 
industry. Modern machining sector has been establishing an 
effort in developing automated machines that are competent of 
precisely detecting tool defects to avert machining processes 
from continuously running with defected tools. A study 
disclosed that the manufacturing and production industries 
spend most of the whole operating costs on machine 
maintenance [1]. Estimating tool life is crucial, but challenging to 
be achieved and although tool manufacturer provides an 
estimated period of tool life [2], the information provided could 
not be fully relied on due to the fluctuation of tool lifespan [3], 
and implemented machining parameters.  

Certain characteristics of the work materials such as low 
thermal conductivity, strong chemical reactivity with the cutting 
tool materials at high temperatures, and relatively low elastic 
modulus, make Titanium alloy as one of the difficult-to-cut 
materials [4]. The deformation or damage of the sharp edges of 
the cutting tool due to the interaction between the tool and the 
workpiece during machining is called tool wear. Deterioration of 
product quality due to tool wear and increase in product cost 
due to frequent tool replacement are major issues in machining 
difficult-to-cut-materials. In manufacturing, cutting tool failure 
increases costs and maintenance time and reduces production 
rates. When machining titanium alloy, it is important to detect 
the condition of the tool and determine the appropriate 
replacement time when machining with one tool for a long time 

or when a large amount of machining is required. To monitor a 
tool during machining, it is necessary to measure signals 
generated during machining and find a way to determine the 
relationship between the condition of the tool and the 
machining signal. 

Signals obtained from sensors during processing are large 
amounts of complex time series data, making it difficult to find 
patterns. Therefore, in the case of time series data, machine 
learning is mainly used to process the data by characterizing it 
with a statistical model to find appropriate patterns and learn 
them. Deep learning, which even learns the process of 
recommending and selecting features from learning data, is 
suitable for real-time monitoring because it can be applied 
directly to time series data without characterizing it with a 
statistical model. Therefore, in this study, we designed deep 
learning models consisting of a combination of CNN MLP and 
CNN LSTM MLP, and examined the model's performance by 
directly applying time series data to the designed AI model. 
Vibrations generated during machine tool processing are 
measured using an acceleration sensor and analyzed using an AI-
based analysis model to identify the relationship between the 
processing state of the machine tool and the tool condition. 
Signals that fluctuate according to the processing state of the 
machine tool were collected, and an AI model for multi-class 
classification was designed and evaluated by combining CNN, 
LSTM, and multi-layer perceptron (MLP). 



2. Experiments

The machining experiment of titanium alloy (Ti-6Al-4V) was 
conducted using an end mill tool with a diameter of 16mm to 
obtain the necessary data, and a monitoring system was created 
by attaching an acceleration sensor (Kistler 8688A10) to the 
spindle of the machining equipment as shown in figure 1. A case 
for installing the accelerometer was manufactured and attached 
to the non-rotating part of the spindle with adhesive. NI-9234 
and cDAQ-9178 were used for data acquisition, and the sampling 
rate was 20kHz. The cutting conditions (cutting speed: Vc, feed: 
fz, axial depth of cut: Ap, radial depth of cut: Ae) are showed in 
table 1. Side milling was applied as shown in figure 2(a), and 
figure 2(b) shows the state of the workpiece after processing. In 
addition, tool wear was periodically measured using an optical 
microscope and used for data collection and tool condition 
analysis. 

Figure 1. Experimental Set-up and installation of acceleration sensor 

Table 1 Cutting conditions

Vc (m/min) fz (mm/tooth) Ap (mm) Ae (mm) 

80 0.1 5.0 3.0 

(a) Cutting path 

(b) Workpiece after cutting 
Figure 2. Cutting path and workpiece after cutting 

Figure 3 shows the signal of acceleration sensor and the 
relation between obtained signal and tool wear. In order to 
obtain processing characteristic signals according to tool wear, 
the tool states are classified into 6 categories such as no wear 

(first point), very light wear (second point), light wear (third 
point), moderate wear (fourth point), and severe wear(max. 
peak of the graph), and tool failure (fifth point). 

Figure 3. Data comparison between the signal of acceleration sensor and 
tool wear 

Figure 4. Flowchart of the signal analyzation through CNN LSTM MLP 

3. Data analyzation methods

Recently, in the case of AI models that combine CNN 
(Convolution Neural Network) and LSTM (Long Short-Term 
Memory), there have been many reported cases of designing AI 
models with high accuracy and reliability by directly applying 
time series data to find the best features [5 - 6]. 

To analyze the state of the tool using the processing signal of 
the machine tool, we designed and trained an AI model for 
multi-class classification by combining CNN, LSTM, and multi-
layer perceptron. The process of learning by applying 
acceleration sensor signals for each tool wear condition to the 
AI model is summarized in figure 4. A study was conducted to 
predict the tool wear by directly applying time series data to an 
AI model created using CNN and hybrid deep learning 
techniques, and various models combined CNN MLP and CNN 
LSTM MLP were reviewed.  



Figure 5. Architecture of CNN MLP for deep learning 

Figure 5 and figure 6 show the structure of a model combining 
CNN MLP and CNN LSTM MLP. Figure 5 is the architecture of a 
model designed with an input layer, CNN layer, Dense layer, and 
output layer, and figure 6 is the architecture of a model designed 
with an input layer, CNN layer, LSTM layer, Dense layer, and 
output layer. 

Figure 6. Architecture of CNN LSTM MLP for deep learning 

4. Results and discussion

The learning curves composed of the model accuracies and 
losses of each CNN MLP architecture and CNN LSTM MLP 
architecture are presented in figure 7 and figure 9. The 
confusion matrix was plotted for each CNN MLP architecture 
and CNN LSTM MLP architecture, as shown in figure 8 and figure 
10, based on the predicted and true labels for each tool 
condition. The evaluation metrics of the confusion matrix for 
each AI model is summarized in table 2. As a result of verifying 
the learned model with test data, the accuracy and evaluation 
indexes of CNN LSTM MLP architecture was higher than that of 
CNN MLP architecture. As a result of evaluating the AI model of 
CNN LSTM MLP architecture with test data, the accuracy was 
over 95% and the developed model was able to classify each 
data precisely based on the true label.  

(a) Training score 

(b) Model loss 
Figure 7. Training score and model loss curve by test data (CNN MLP 
architecture) 

Figure 8. Confusion matrix of CNN MLP architecture plotted based on 
true and predicted data 

(a) Training score 



(b) Model loss 
Figure 9. Training score and model loss curve by test data (CNN LSTM 
MLP architecture) 

Figure 10. Confusion matrix of CNN LSTM MLP architecture plotted 
based on true and predicted data 

Table 2 Evaluaiton metrics of the confusion matrix for each AI model

AI 
model 

Macro 
precision 

(%) 

Macro 
recall (%) 

Macro 
F1-score 

(%) 

Accuracy  
(%) 

CNN + 
MLP 

90 90 90 89.9 

CNN + 
LSTM 
+ MLP 

98 98 98 98.2 

5. Conclusion

In order to predict and monitor the state of the tool during 
processing of titanium alloys, an AI model for multi-class 
classification was designed and trained by combining CNN, LSTM 
and a multi-layer perceptron to analyze the state of a tool using 
processing signals of a machine tool. The performance of the AI 
model, which classifies the tool states into 6 categories.  

To predict the tool wear by directly applying time series data 
obtained from acceleration sensors during machining to an AI 
model created using CNN and hybrid deep learning techniques, 
various models combined CNN MLP and CNN LSTM MLP were 
reviewed and evaluated. As a result of verifying the learned 
model with test data, the accuracy and evaluation indexes of 
CNN LSTM MLP architecture was higher than that of CNN MLP 
architecture. As a result of evaluating the AI model of CNN LSTM 
MLP with test data, the accuracy was over 95% and the tool state 
was successfully predicted. In the future, it is believed that 

collecting and analyzing more data can develop into predictive 
maintenance technology that can predict tool state 
abnormalities during processing. 
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