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Abstract 
 

CNC milling, one of the most essential and popular machining processes in the manufacturing industry, shows highly time-varying 
and complicated dynamical characteristics. The importance and complexity of the milling processes have made tool condition 
monitoring (TCM) a hot issue over the past decades. Recently, the rapid development of machine learning has set off new waves in 
various fields of industry. Numerous TCM methods utilizing machine learning methods have been explored, and most of them focus 
on tool wear monitoring, including wear state identification and remaining useful life prediction. However, there is still a lack of 
capability to predict tool breakage, a more severe and unexpected cutting tool failure mode, concurrently with tool wear status using 
machine learning. Therefore, the article provides a state-of-the-art review of tool state recognition (TSR), indicating the identification 
of the holistic tool states from health, wear, and breakage. Specifically, the main sections outline traditional machine learning 
methods that require signal processing and feature extraction and advanced neural network models that can detect tool states across 
different working conditions. Three primary methodologies are selected to present a more reliable analysis and intuitive comparison, 
including typical traditional methods, advanced machine learning, and transfer learning. Benchmark studies are carried out for a tool 
vibration dataset collected by milling experiments under different working conditions to compare the recognition accuracy and 
computational efficiency quantitatively. The comparison results address the primary strengths and weaknesses of current methods 
for TSR. Finally, potential research directions are concluded to enhance TSR's accuracy, efficiency, and reliability. 
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1. Introduction  

CNC milling, which utilizes rotational cutting tools to 
intermittently cut workpieces into desired geometric surfaces, is 
one of the most popular and efficient machining processes in the 
manufacturing industry. Due to the complex mixed physical and 
chemical effects caused by forces, shocks, and heat, cutting 
tools, which are the most active cutting element during the 
milling process, have high failure risks [1]. Recently, due to the 
fast development of sensing and information technology, 
various monitoring signals have been collected during the 
milling process, and machine learning has become the foremost 
tool in TCM. However, most TCM studies focus on progressive 
tool wear, such as wear state identification, wear volume 
estimation, and remaining useful life prediction. Much less 
attention has been paid to tool breakage, which is a more severe 
and unexpected tool failure mode during the milling process.  

In order to illustrate the difference between tool breakage and 
progressive tool wear, a schematic diagram of degradation 
curves for both situations is given in Figure 1. The average flank 
wear width (VB) is a widely accepted metric to evaluate the tool 
life. As shown in Figure 1(a), there are three distinct stages for a 
progressively worn tool: initial wear, normal wear, and severe 
wear. The VB values of the tool increase rapidly in the initial 
wear stage and severe wear stage and vary slowly in the normal 
wear stage. However, as shown in Figure 1(b), the VB values 
suddenly jump to a high level close to failure once tool breakage 
occurs. Usually, tool breakage is prone to occur in the initial wear 
stage due to improper setting of cutting parameters at the 
beginning and in the severe wear stage due to the rapidly 
growing forces acting on the tool with accumulation wear. Tool 
breakage may also occur when the machining workpiece has a 

high hardness and the tool is relatively brittle. Additionally, 
milling chatter is another main cause of tool breakage. Although 
analytical models were developed to guide parameter selections 
[2], the changing geometrical status of cutting tools and 
unexpected fluctuations in cutting depth could turn stable 
milling into unstable conditions, and further lead to tool 
breakage [3,4]. Compared to monitoring progressive tool wear, 
the detection of tool breakage is more difficult because the tool 
breakage occurs randomly and instantaneously without 
warning. Therefore, the quality of the monitoring signals and the 
detection algorithms need to be further improved to identify the 
tool breakage status [5]. 

 
Figure 1. Schematic diagram of progressive wear and breakage 
degradation curves. (a) Progressive tool wear. (b) Tool breakage. 

2. TSR review   

2.1. Feature extraction for TSR  
Generally, feature extraction methods could be categorized as 

time-domain methods, frequency-domain methods, and time-
frequency domain methods. Time-domain analysis has the 
advantage of inexpensive computation. Cutting force signals can 
directly reflect the dynamic variation between tools and 
workpieces, so multiple studies extracted time-domain features 
from force signals for TSR [6]. Altintas et al. [7] utilized the 
difference of force signals to detect the tool breakage in the 
milling process. Since the current/power varies rapidly with the 
cutting force and its measurement does not require additional 

http://www.euspen.eu/


  

 

sensors, various time-domain statistical features like the 
maximum, average, and standard deviation can be extracted 
from current/power signals for TSR [8]. Another efficient signal 
for time-domain analysis is acoustic emission, the primary 
advantage of which is that the significant frequency range 
relevant to tool status is much higher than that of the 
environmental noise and machine tool vibration [9].  

The frequency-domain analysis utilizes the fast Fourier 
transform (FFT) to convert time-domain signals to the frequency 
domain, and tool failure features are then extracted from the 
frequency spectra [10]. Compared to pure frequency-domain 
analysis, the time-frequency analysis is more powerful and more 
appropriate for the nonstationary and nonlinear monitoring 
signals [11]. Short-time Fourier transform (STFT), empirical 
mode decomposition (EMD), and wavelet transform (WT) are 
mainstream time-frequency methods. STFT is an extension of 
FFT and can simultaneously analyze signals in both time and 
frequency domains [12]. WT and its variants, such as discrete 
wavelet transform (DWT), continuous wavelet transform (CWT), 
and wavelet packet decomposition (WPT) could be the most 
popular time-frequency methods. The ability to use high-
frequency resolution makes them powerful in the feature 
extraction of TSR [13]. Compared to WT and its variants, EMD 
can adaptively decompose signals into a series of intrinsic mode 
functions (IMFs), which has the advantage of not requiring any 
predetermined parameters and functions [14]. Hilbert 
transform [15] and energy-based analysis [16] are widely 
combined with EMD for TSR.   
2.2. Machine learning-based TSR    

Machine learning is widely used in TSR to predict the tool 
states from extracted features, including support vector 
machine (SVM), hidden Markov model (HMM), random forest 
(RF), clustering, and artificial neural network (ANN). SVM, 
developed by statistical learning theory and structural risk 
minimization principle, is a popular machine learning algorithm 
[17]. HMM consists of a Markov process that describes 
transition sequences of hidden states and a random process that 
establishes observation sequences of hidden states [18]. RF is a 
typical ensemble learning method that combines the output of 
multiple decision trees to give a comprehensive prediction [19]. 
Dahe et al. [20] extracted statistical features from vibration 
signals and utilized RF to recognize tool conditions. Jogdeo et al. 
[21] utilized a statistical analysis method to tune 
hyperparameters of the random forest and achieved robust 
recognition of tool states.  

ANN has become the most popular decision-making method 
in various domains, which shows excellent nonlinear learning 
ability to recognize tool breakage and tool wear from signal 
features [22]. Huang et al. [23] proposed a probabilistic neural 
network for the decision-making analysis of a tool breakage 
detection system. Different from other machine learning 
algorithms, clustering is an unsupervised learning method that 
can be used for anomaly detection purposes [24]. Torabi et al. 
[25] extracted wavelet features of force and vibration signals for 
the clustering analysis, and the results showed that clustering 
methods are repeatable and noise-robust in TSR. Gui et al. [26] 
utilized the clustering method to analyze the time-domain 
features for real-time tool breakage detection. 
2.3. Deep learning-based TSR  

Deep learning models with powerful nonlinear fitting abilities 
have the advantage of handling large and complex datasets [27]. 
Typical deep learning models for TSR include auto-encoder (AE), 
recurrent neural network (RNN), and convolutional neural 
network (CNN). AE is a powerful unsupervised learning 
algorithm for the extraction of tool failure features [28]. Kin et 
al. [29] proposed a stacked AE-based CNC machine tool 

diagnosis system. Popular RNNs include long short-term 
memory (LSTM) [30] and gated recurrent units (GRU) [31], which 
are ideal options for the process of time-series tool monitoring 
signals [32]. Nam and Kwon [33] proposed a tool breakage 
monitoring system with LSTM-based autoencoders. Due to the 
outstanding ability of nonlinear mapping, CNN has become the 
actual standard in deep learning communities and is widely used 
in TSR [34]. Yin et al. [35] combined the one-dimensional CNN 
(1D-CNN) and deep generalized canonical correlation analysis 
for tool failure diagnosis based on multiple sensor signals. 

The application of deep learning models in TSR requires a large 
amount of training data. However, in the practical milling 
process, the cutting tool is only allowed to work in health 
conditions. Once the tool wear/breakage occurs, the CNC 
machine tool will shut down immediately. Namely, limited 
failure samples could be collected for TSR in the practical milling 
process. In this case, transfer learning methods are studied to 
solve the data imbalanced problem [36]. Li et al. [37] proposed 
a Wasserstein generative adversarial network to monitor tool 
breakage under data-imbalanced conditions.  

3. Benchmark study    
3.1. Experimental setup 

To perform the benchmark study of typical TSR techniques, 
milling experiments were carried out on a five-axis machining 
center. As shown in Figure  2, a three-axis accelerometer was 
mounted on the spindle box to collect the cutting vibration 
signals, and the machined workpiece is a brick with a material of 
#45 steel. The four-edge end milling cutter with a diameter of 12 
mm was studied in the experiments, and those in health, wear, 
and breakage status, as shown in Figure 3, were used to machine 
the workpiece. The cutting depth was 1 mm, and the feed rate 
was set to 0.1 mm/rev. Moreover, rotation speeds of 2000 RPM, 
2600 RPM, and 3200 RPM were used to collect cutting vibration 
signals with a sampling frequency of 12 kHz.  

 
Figure  2. Milling experimental setup 

 
Figure 3. Three different cutting tools status 

After the milling experiments, vibration signals of cutting tools 
under different health conditions (health, wear, and breakage) 
and various working conditions (2000 RPM, 2600 RPM, and 3200 
RPM) were obtained. Since these vibration signals were 
collected under actual machining processes, signal pre-
processing techniques were performed to remove the signal 
segments collected during air cutting. Finally, the X-directional 
vibration signals collected under different working conditions 



  

 

are utilized to organize data samples, and a total of 1500 data 
samples were obtained for each condition. The constructed 
three datasets are shown in Table 1. The raw vibration signals as 
well as the frequency spectra of data samples in dataset C are 
visualized in Figure 4. 
Table 1 Dataset definition  

Dataset Spindle speed Tool condition Sample Number 

Dataset A  2000 RPM Health/wear/breakage 500/500/500 
Dataset B 2600 RPM Health/wear/breakage 500/500/500 
Dataset C  3200 RPM Health/wear/breakage 500/500/500 

 
Figure 4. X-directional vibration signals collected under 3200 RPM  

3.2. TSR methods selection 
Three typical TSR methods are selected to present the 

comparative studies, which include typical machine learning 
methods, deep learning neural networks, and transfer learning 
techniques. A brief introduction to these approaches is given as 
follows, 

1) Feature extraction with SVM (FE-SVM). As one of the most 
popular shallow learning approaches, SVM is widely used in TSR. 
Fault features extracted from the time domain, frequency 
domain, and time-frequency domain are utilized as the model 
inputs [38]. FE-SVM is introduced in comparative studies to 
demonstrate the performance of traditional shallow models for 
TSR.  

2) 1-D CNN. The 1-D CNN is a standard of deep learning 
approaches and is also widely used in TSR. Thus, a 1-D CNN with 
a typical structure of two convolutional layers and three fully 
connected layers is studied [34], which can give a comparison of 
deep models to shallow ones. The frequency spectra of vibration 
signals are utilized as the model inputs. 

3) Cross-domain adaptation networks with attention 
mechanism (CDATT). CDATT is an advanced transfer learning 
model that utilizes the attention mechanism to capture the 
significant fault features, and a joint distribution adaptation 
regularization term is constructed to solve the performance 
degradation under variable working conditions [39]. 
3.3. Results and analysis 

The comparative studies are performed under nine scenarios, 
and the identification results are given in Table 2. It is worth 
noting that the ratio of training data to test data in all scenarios 
is 7:3, and the training and testing data are the same for all 
methods. For scenarios 1, 5, and 9 where the testing samples are 
from the same dataset as the training samples, the identification 
results show that the identification accuracies of FE-SVM are 
close to 1-D CNN and CDATT, indicating that shallow learning 
models can achieve competitive performance with deep 
learning models in the scenario of same working conditions. 
However, for the other scenarios where the testing samples are 
from different datasets, the identification results show that FE-
SVM suffers from a significant performance degradation 
compared to 1-D CNN and CDATT in TSR. On the other hand, 
although the identification results of 1-D CNN are much better 
than FE-SVM, there is a distinct performance gap between 1-D 
CNN and CDATT. Namely, the results indicate that the tool 
failure features extracted by 1-D CNN are more robust than 
hand-crafted features utilized in FE-SVM, but these features 
cannot be well adapted to a fresh situation in TSR. In such 
different situations, transfer learning models like CDATT can be 
a good option for TSR. The ability to learn cross-domain tool 

failure features can solve the domain discrepancy caused by 
different working conditions. 
Table 2 Identification accuracy (%) for different models under different 

scenarios. 

No. Scenario FE-SVM  1-D CNN CDATT 

1 Dataset A to A 99.1 100 100 
2 Dataset A to B 23.87 61.93 99.29 
3 Dataset A to C 25.46 57.54 86.59 
4 Dataset B to A 27.32 63.1 99.09 
5 Dataset B to B 88.9 98.57 99.87 
6 Dataset B to C 32.2 61.47 90.32 
7 Dataset C to A 32.4 66.31 91.48 
8 Dataset C to B 37.75 73.94 99.5 
9 Dataset C to C 93.16 99.42 100 

The computation burden and efficiency of the identification 
algorithm are other evaluation metrics in TSR. The training and 
testing time of different algorithms in scenario 9 are presented 
in Table 3. It can be seen that the training time of FE-SVM is 
much lower than deep learning models, and the computation 
burden increases with the complexity of deep learning models. 
Nevertheless, well-trained 1-D CNN and CDATT are more 
efficient in the testing stage than SVM. The results indicate that 
although deep learning models require more computation 
burden in the model training stage, they could be more efficient 
than shallow learning models. 
Table 3 Computation time for different models in scenario 9. 

Model Training time (s) Testing time (ms) 

FF-SVM 4.31 377.65 
1-D CNN 72.56 8.92 
CDATT 167.05 16.14 

4. Conclusion    

This paper provides a comprehensive review of TSR, while 
feature extraction-based, machine learning-based, and deep 
learning-based methods are detailed and summarized. 
Moreover, milling experiments under different working 
conditions are carried out, and benchmark studies among three 
popular TSR approaches are presented through the collected 
tool data. Based on the review and benchmark studies, 
conclusions and suggestions for TSR, especially potential 
challenges for the practical application of deep learning models 
in  TSR are summarized as follows, 

1) Literature review indicates that machine learning and deep 
learning methods have become state-of-the-art techniques in 
TSR. The results of benchmark studies demonstrate that deep 
learning models show better identification accuracy than typical 
feature extraction-based shallow learning methods. Therefore, 
exploring more accurate and robust deep learning models in TSR 
can be a good research direction. 

2) Regarding computation burden and efficiency, the results of 
benchmark studies reveal that deep learning models take more 
computation time but operate more efficiently in the testing 
stage. However, some occasions, such as online monitoring, 
require the TSR model iterative upgrades with increasing milling 
data. So, the requirements on heavy computation burden may 
still be a nonnegligible drawback that restricts the application of 
deep learning models. Therefore, research on simplifying 
models without degrading model performance is still a 
necessary and promising topic. 

3) Since collecting sufficient data samples with specific milling 
conditions to train a deep learning model from scratch is always 
costly and time-consuming, the development of transfer 
learning TSR models can be a good solution to tackle this 
problem. The results of benchmark studies exhibit that the 
transfer learning-based model can perform well in unseen work 
conditions. Therefore, exploring robust and accurate TSR models 
on limited or even no data conditions needs more attention in 
future work. 



  

 

4) Although advanced deep learning models show superior 
performance than traditional feature extraction-based models 
in TSR, the black-box nature and complex information mapping 
process make them difficult for users to understand. However, 
in industrial scenarios, especially high-value milling processes, 
the explainability and reliability of the identification algorithm 
are of great importance. Therefore, integrating various 
knowledge like physics, simulation, or theory in deep learning 
models and improving their interpretability is an urgent and 
essential topic. 

5) Current TSR research concentrates on developing models 
with higher detection accuracy and lower prediction error but 
ignores the inevitable effects of uncertainties on prediction 
results. Typical uncertainties include milling environment 
fluctuation, data collection device degradation, and noise 
interference. Therefore, considering the uncertainty and 
transforming the point prediction framework into an interval 
prediction framework to improve model practicality are also 
challenging and valuable topics. 
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