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Abstract 

 
In the turning process, the surface roughness of the machined part is considered a critical indicator of quality control. Provided the 
conventional offline quality measurement and control is time-consuming, with slow feedback and an intensive workforce, this paper 
presents an online monitoring and prediction system for the effective and precise prediction of surface roughness of the machined 
parts during the machining process. In this system, the audible sound signal captured through the microphone is employed to extract 
the features related to surface roughness prediction. However, owing to the nonlinear phenomena and complex mechanism causing 
surface quality in the whole process, the selection of statistical features of the sound signal in both the time and frequency domains 
varies from one case to another. This variation may lead to false prediction results as sufficient domain knowledge is required. 
Therefore, the versatile and knowledge-independent features extraction method is proposed, which exploits deep transfer learning 
to automatically extract sound signal features in the time-frequency domain through pre-trained convolution neural networks (pre-
trained CNN). The performance of prediction models based on two feature extraction methods – statistical feature extraction and 
automatic feature extraction was further tested and validated in the case study. The results demonstrate that the performances of 
the prediction model built on the automatically extracted features outperformed that developed with the statistical feature method 
concerning the accuracy and generalization of the prediction model. In addition, this study also provides solid theoretical and 
experimental support for developing a more precise and robust online surface quality monitoring system. 
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1. Introduction    

During the machining process, the surface quality monitoring 
system has huge potential for online detecting and predicting 
surface roughness, which is regarded as a fundamental indicator 
of surface quality control of machined workpieces. To improve 
prediction performance of such system, various sensing 
techniques have been applied and investigated [1]. Due to easy 
access and low cost, the application of audible sound signals 
captured via a microphone has attracted more attention to the 
development of machining monitoring systems [2]. However, 
the main challenge is how to extract hidden information 
characteristics from the sound signal that correlates to surface 
roughness. An approach to tackle this is based on feature 
engineering – feature extraction. Although varied feature 
extraction methods have been independently discussed, the 
performance comparison of them under a unified dataset has, 
to the authors’ knowledge, not been studied and published. 

2. Methodology  

To quantify the performance comparison of different feature 
extraction scenarios, a methodology is proposed and 
demonstrated as in the flowchart shown in Figure 1. Firstly, the 
raw sound signal in the time domain was recorded during the 
experiment (detailed description in Section 3) for each cutting 
test. Afterwards, it was divided into constant time interval 
length (10 s) blocks with corresponding surface roughness (Ra) 
measurements. The surface roughness was used as the 

prediction label. To enlarge the amount of dataset for model 
training and testing, each collected 10 s sound signal was further 
subdivided into segments with three different time lengths (1 s, 
5 s, and 10 s), determining the total amount of dataset. 
Following this, each subdivided segment was separately 
analysed and converted into a frequency domain by power 
spectrum density (PSD) and time-frequency domain in the form 
of a generated 2D RGB image (256x256x3) - spectrogram by 
short-time Fourier transformation (STFT).  

 
To acquire hidden information characteristics of sound signal 

correlated to the surface roughness, two feature extraction 
scenarios are proposed and compared. In the statistical feature-
based scenario, features of the sound signal segment in both 
time and frequency domains were extracted from defined 
statistical features shown in Table 1. As a mature convolution 
neural network (CNN) architecture, VGG16 was employed to 
achieve automated feature extraction in this case, which was 
initially developed for object recognition by Oxford’s Visual 
Geometry Group (VGG) and then widely applied to transfer 
learning tasks. In transfer learning-based scenarios, each 
generated spectrogram was fed into pre-trained VGG16 [3], in 
which its architecture was modified by removing the top two 
layers - the fully connected and classification layer and other 
layers were reserved and equipped with pretrained weights 
acquired in the training process of ImageNet dataset. Two 
feature groups of each spectrogram were respectively 
generated from nontrainable VGG16 with fixed original pre-
trained weight in each layer and from trainable VGG16, in which 
all weights were fine-tuned during the training process. 
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Features extracted based on different scenarios associated 
with corresponding surface roughness were used as input data. 
They were split into training data (70% of all data), validating 
data (20% of all data) and testing data (10% of all data) for the 
establishment of two prediction models: support vector 
regression (SVR) and artificial neural networks (ANN). During the 
training process, Bayesian optimization [4] was used for 
automatic hyper-parameters tuning and mean squared error 
(MSE) was utilized as the loss function. Iterative runs resulted in 
a well-trained model with optimal hyper-parameters to obtain 
predicted surface roughness values.  

 

 
Figure 1. Flowchart of methodology. 

Table 1. The type of statistical features (8 types in total) extracted from 
sound signal in the time domain (TDA) and frequency domain (PSD). 
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3. Case study  

The experiment was conducted to collect data containing 
surface roughness and sound signals in dry turning operation in 
a CNC lathe (SMT Swedturn 300) without significant background 
noise. The workpiece material is the hardened and tempered 
tool steel - Toolox33. The workpieces are cylindrical bars with a 
length of 550 mm and a diameter of Ø124 mm. The tooling 
system incorporates the insert (CNMG 12 04 08-PM 4425, 
Sandvik Coromant) with a nose radius (RE) of 0.8 mm and the 
tool holder (DCLNL 2525M, CoroTurn). During the machining 
process, two cutting parameters, cutting speed (320 and 280 
m/min) and feed rate (0.4, 0.3 and 0.2 mm/rev), were set as 
variable factors to develop a Taguchi orthogonal experiment 
with six parameter combinations. The depth of cut was constant 
at 1 mm. Under each parameter combination, the test was 
replicated twice, in which the workpiece was machined from 
one run to another with the total cutting length 480 mm per run 
until flank wear of the cutting tool reached 0.3 mm as standard 
tool worn-out criteria, which was measured through the digital 
microscope (Dino-lite RK-10A). During each cutting run, the 
audible sound signal was captured through a microphone 
(Microtech GEFELL MKS 211) located at the turret, which was 
later processed by a data acquisition system (Siemens LMS 
SCADAS Mobile SCM01) with a 40 kHz sampling frequency. 
Subsequently, the captured signal was subdivided into each 
single segment with constant time interval (10 s) as each 
sampling area (seg.1, seg.2 …) where corresponding surface 
roughness – Ra (referred as arithmetic average value of surface 
roughness) were measured three times by profilometer 
(Mitutoyo SJ-210) at different angles (0⁰, 120⁰, 240⁰) around the 
cylinder bar then averaged as the input label to the prediction 
models, see Figure 2.  

 

Figure 2. Experiment setup and surface roughness (Ra) measurement. 
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4. Numerical results analysis and discussion 

The performance metrics were employed to estimate and 
compare the accuracy and reliability of two predictors: support 
vector regressor (SVR) and artificial neural networks (ANN) used 
for surface roughness prediction. The proposed metrics include 
means absolute error (MAE), mean square error (MSE), relative 
error (ER), average value and standard deviation of prediction 
accuracy, and coefficient of determination (R2), which are 
described in Eqs. (1)-(6), respectively, where 𝑦𝑖  denotes the 
actual value of measured or observed surface roughness 
collected in the experiment, 𝑦̂𝑖 expresses the predicted surface 
roughness value as each single output of applied predictor, and 
n represents the total amount of testing data.  
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Based on defined performance metrics, the surface roughness 
prediction performance of two predictors was quantitatively 
measured and compared on the testing dataset with different 
feature extraction scenarios from two aspects. Firstly, in each 
predictor, prediction performance was compared under three 
distinct feature extraction scenarios when sound signal 
segments were at the same time interval. Secondly, in each 
feature extraction scenario, the performance of each predictor 
was further analysed under sound signal segments with 
different time interval lengths.  
 

As seen in Figure 3, when SVR was chosen as the prediction 
model, the application of input features extracted via trainable 
VGG16 from the sound signal segment with all three different 
time interval lengths (1 s; 5 s; 10 s) provided the superior 
prediction performance, as measured by MAE (0.10; 0.13; 0.24), 
MSE (0.03; 0.04; 0.12), average prediction accuracy (96.1%; 
94.6%; 89.6%), and R2 (0.97; 0.95; 0.86). These results were 
tightly followed by the SVR model trained with input features 
extracted from nontrainable VGG16, while the SVR model 
developed with statistical features rendered the worst 
prediction performance estimated and analysed with all defined 
performance metrics. Besides, the same conclusion is also 
reflected in Figure 4, which depicts the relative error distribution 
of predicted data points. With the lowest average value (3.9%; 
5.4%; 10.4%) and narrowest range of relative error, the SVR 
model coupled with features extracted from trainable VGG16 
presented the lowest prediction error regardless of time interval 
lengths (1 s; 5 s; 10 s) of sound signal segments applied for 
feature extraction. Moreover, as shown in Figure 5 and Figure 6, 
similar behaviour occurred in the ANN model. Features 
extracted via trainable VGG16 achieved the best prediction 
performance exerting sound signal segments in all three varied 
time interval lengths, which can be verified with lowest MAE 

(0.09; 0.15; 0.21), MSE (0.02; 0.05; 0.08), average relative error 
(3.4%; 5.9%; 8.7%), highest prediction accuracy (96.5%; 93.6%; 
90.8%) and R2 (0.97; 0.61; 0.90). Additionally, the exception 
appeared in the performance comparison between features 
extracted from nontrainable VGG16 and statistical features, 
which was different from the SVR model. When sound signal 
segment with 1 s and 10 s time interval lengths, it was concluded 
that the ANN model combined with features from nontrainable 
VGG16 outperformed the ANN model trained with statistical 
features. Nonetheless, when sound signal segments with 5 s 
time interval length were employed, this conclusion was the 
opposite: that the ANN model developed with statistical 
features achieved better performance than features extracted 
from nontrainable VGG16. 
 

Within each feature extraction scenario, the influence of 
sound signals with different time interval lengths on the 
performance of each prediction model was further compared. In 
both SVR and ANN, features obtained from sound signal 
segments with shorter time interval lengths were prone to offer 
better prediction performance. One exception appeared in the 
ANN model trained with features extracted from nontrainable 
VGG16, that sound signal segments with 5 s and 1 s time 
intervals provided almost the same prediction performance as 
illustrated in Figure 4 & Figure 6. 

 

 

Figure 3. Performance metrics of prediction results based on multiple 
feature extraction methods from SVR as a predictor; (a): 1 s time length 
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of the sound signal as input data; (b) 5 s time length of the sound signal 
as input data; (c) 10 s time length of the sound signal as input data. 

 
 
Figure 4. Relative error - er (%) of surface roughness prediction in SVR 
based on different feature extraction scenarios as input data with 
different time interval lengths of sound signal segments. 

 

Figure 5. Performance metrics of prediction results based on multiple 
feature extraction methods from ANN as predictor; (a): 1 s time length 

of the sound signal as input data; (b) 5 s time length of the sound signal 
as input data; (c) 10 s time length of sound signal input data. 

 

Figure 6. Relative error - er (%) of surface roughness prediction in ANN 
based on different feature extraction scenarios as input data with 
different time interval lengths of sound signal segments. 

5. Conclusion  

This paper proposes a novel approach to verify and compare 
the influence of varying feature extraction scenarios applied to 
the sound signal segment with different time interval lengths, 
including (1) statistical features from both the time and 
frequency domain of sound signal, (2) automated features 
directly extracted from sound signal spectrograms via 
nontrainable pre-trained VGG16 and (3) automated features 
extracted from sound signal spectrograms via trainable or fine-
tuned pre-trained VGG16 on performances of surface roughness 
(Ra) prediction in two predictors – support vector regression and 
artificial neural networks. The overall results indicate that 
compared with statistical features, the automated feature 
enables the extraction of more valuable hidden information 
characteristics from the sound signals, representing a stronger 
correlation to the final prediction target – surface roughness. 
Based on its superior performance, automated feature 
engineering is conducive to the establishment of a surface 
quality monitoring system in terms of improved prediction 
accuracy, generalization, and versatility with a low requirement 
for domain expertise in the condition of a large dataset. Given 
that only one pre-trained CNN was applied in this case, future 
work will be focused on the exploration of other more advanced 
pre-trained CNNs, including but not limited to ResNet, 
Inception-ResNet and vision transformer. 
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