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Abstract 
 

To proactively address the occurrence of these issues, the monitoring and prediction methodology of centering process within 
batch production was developed in this study.  The experimental phase encompassed the utilization of 20 quartz lenses for centering 
batch production, with real-time monitoring of material removal employing an acoustic emission (AE) sensor.  Based on the AE signal 
processing, the long short-term memory (LSTM) algorithm was applied to forecast the trajectory of AE signal trends.  Moreover, 
convolutional neural network (CNN) was integrated into LSTM (CNN-LSTM) to enhance the prediction speed. By virtue of this 
predictive capability, an assessment of the future conditions within the centering process was made feasible.  The analysis of more 
than 32,000 data points was derived from batch production.  A highly accurate predictive model was built in this study, as indicated 
by coefficient of determination (R2) 0.9067, root mean square error (RMSE) of 0.0577, and mean absolute error (MAE) of 0.0400.  By 
establishing appropriate thresholds and calculating deviations between real AE signals and predicted values, the defects within the 
centering process can be effectively detected. 
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1. Introduction 

Optical positioning accuracy is critical to the manufacturing of 
nanometer scale semiconductors.  To achieve such feat, high 
performance optical glass lenses with excellent optical quality 
are required.  Glass lenses normally go through a key 
manufacturing process known as centering to optimize optical 
positioning accuracies. 

It is common for glass lenses that came off of surface grinding 
with their optical axis and geometric center axis misaligned.  
Thus, centering is crucial step in correcting optical axis error.  
However, the batch production of centering process is affected 
by the operators fixing the lenses, the original dimensions of 
lenses or the stability in machine working.  These uncertain 
factors would randomly cause unexpected defects such as edge 
cracks.  The further negative effect would be on the lens 
appearance and optical performance. 

Acoustic emission (AE) sensors are proven useful in 
monitoring the status of a manufacturing process.  D. Choi et al. 
created a real time monitoring system that used AE signal during 
cutting to identify tool breakage [1].  It is found that a drop in AE 
signal can be tied to tool breakage.  Z. Wu et al. experimented 
with multi-sensor signals including AE signal to identify features 
related to tool wear [2].  From experiment, AE sensor combined 
with accelerometer sensor provided the best accuracy to tool 
wear prediction.  W. N. Lopes proposed a method to monitor the 
dressing operation of aluminum oxide grinding wheel [3].  T. 
Segreto at al. proposed a method of using AE and other sensors 
to monitor a robot-assisted polishing process for online 
assessment of workpiece surface roughness [4].  This study not 
only used AE sensor to monitor the centering condition of hard-
and-brittle material, but also predict the AE signal to forecast the 
process condition. 

In the research of processing prediction, it can be seen that 
different models will be selected according to different 
situations.  Based on the time series forecasting model of the 
wavelet process neural network, Bitzel Cortez et al. used the long 

short-term memory (LSTM) model and other machine learning 
models to compare the accuracy of emergency event prediction, 
and found that LSTM is more accurate than the machine learning 
model in time series prediction [5].  Combining convolutional 
neural network (CNN) with other algorithms can significantly 
reduce model computation time and improve overall efficiency.  
R. Yan et al. built a multi-time and multi-site prediction model, 
which compared CNN-LSTM with other algorithms [6].  X. Shao 
et al. proposed a novel domain fusion deep model based on 
CNN, LSTM, and discrete wavelet transform (DWT) [7].  M. F. 
Alsharekh et al. developed a residual convolutional neural 
network (R-CNN) structure and combined it with a multi-layer-
LSTM architecture to create an innovative prediction framework 
[8].  In consideration of the strict changes in the short-time AE 
signal, this study tried LSTM to predict the AE signals in centering 
process.  Furthermore, CNN was integrated into LSTM to 
improve the prediction efficiency. 

In this study, LSTM was used with AE sensor to monitor and 
predict the condition of optical glass lens centering process. 

2. Methodology 

   
2.1. Centering process 

Centering process aligns the geometrical axis to the optical 
axis by alignment and edge grinding.  After fixing the glass lens 
between two bell-shaped clamps and aligning the optical axis to 
the rotary axis, the edge of optical glass lens is ground to adjust 
the size and align the geometrical axis, as shown in Figure 1. 
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Figure 1. Mechanism of centering process 
 

Centering is cylindrical grinding process of hard-and-brittle 
material.  The material removal rate (MRR) is derived by the 
following equation: 

𝑀𝑅𝑅 = 𝑑𝑊𝑣𝑤 = 𝑑𝑊𝜔𝑤(𝑟𝑤 +
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where 𝑑 is the depth of cut that changes over time 𝑡 due to feed 
rate 𝑓, 𝑊 is the width of cut, 𝑣𝑤 is the speed of grinding point 
on the lens, 𝜔𝑤 is the rotation speed of the lens and 𝑟𝑤 is the 
lens radius. 

During centering process, the grinding energy is a key factor 
affecting the quality of a glass lens’s edge.  The specific energy is 
related to the grinding power 𝑃 and can be calculated using the 
following equation [9]: 
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where  𝑢  is the grinding energy, 𝐹𝑡  is the tangential grinding 
force, 𝑣𝑠 is the grinding wheel speed. 

During centering process, the grinding energy is transmitted 
from the grinding wheel through grinding force to the lens edge, 
resulting in material removal.  Furthermore, while the micro- 
structure of material is broken, the grinding energy dissipates 
into the enviroments as heat and wave.  AE signal is the stress 
wave that mainly transferred from the grinding energy.  It is 
assumed to be related to the amount of grinding energy. 

 
2.2. Acoustic emission (AE) 

AE signal is elastic stress wave which is generated from 
irreversible structural changes.  It is high-frequency signal and 
indicates the condition of a material.   

A hydrophone AE sensor was adopted in this study to monitor 
the grinding point in centering process.  It was installed in the 
outlet of the cutting fluid.  The AE signal was collected through 
cutting fluid instead of mechanical contact.  The vibration of 
working machine was then isolated from the sensor.  On the 
other hand, the flow of cutting fluid influenced the noise of 
signals. 

 
2.3. AE signal process for real-time monitoring 

The frequency band of AE sensor was set 300-350 kHz, which 
was the most sensitive band to centering process.  To process 
and analyze the data in real time, the sampling rate of raw AE 
signal was limited in 20Hz. 

To catch the trend and seanal features of the AE signals more 
efficiently, The data collected without centering processing was 
cut away.  Only the AE signals of centering processing were  fed 
into the following prediction models. 

 
2.4. Long short-term memory (LSTM) 

LSTM is a type of time recurrent neural network suitable for 
processing manufacturing processes with longer prediction time 
intervals.  Data with indefinite time length can be memorized by 
LSTM.  The proposed model comprises three LSTM layers, each 
of which includes 128 hidden units. Moreover, a dense layer 

with hidden units equivalent to the length of the prediction 
horizon is appended as the final layer. 

To reach the required computation speed and accuracy in 
real-time monitoring of real manufacturing process, 
convolutional neural network (CNN) was employed to improve 
the computation efficiency.  CNN is a feedforward neural 
network.  It can effectively read and classify the signal features.  
By integrating CNN into LSTM, the features in AE signals are 
extracted in a short time and treated as references for further 
signal prediction. 

In the hybrid model, CNN consists of two convolutional layers 
with 64 filters and a max-pooling layer with a pool size of 2, as 
shown in Figure 2.  The activation function used is the ReLU 
function, which makes the model computationally simple and 
fast. 

 

 
 

Figure 2. Structure of proposed CNN-LSTM 

 
Each prediction model was trained and verified on sets of 

preprocessed signals. Three metrics—the coefficient of 
determination (R2), RMS error (RMSE), and mean absolute error 
(MAE)—were used to evaluate model accuracy. 

 

3. Experimental setup 

BE-WF-502N horizonal centering machine from Shonan Optics 
was used in this study.  The machine was equipped with a #230 
and 150-mm diameter single-layer electroplated diamond 
grinding wheel.  20 quartz lenses with diameters of 39 mm were 
randomly chosen from a batch of 300 lenses on a production line.  
The industrial computer with CPU 4-core i5-7500, RAM 16GB 
and SSD 256GB was adopted as edge computing to execute AE 
signal collection, data preprocess and prediction.  The 
experimental setup is depicted in Figure 3. 

 

 
 

Figure 3. Experimental setup of centering process 

 
A lens in centering process was ground for totally 75 seconds, 

including 45 seconds of feeding and 30 seconds of spark out. 
During centering process, the feed rate was 0.02 mm/s in 
feeding stage and 0 mm/s in spark out stage.  The grinding wheel 
rotational speed was 3,000 rpm and the lens rotational speed 
was 2 rpm. 

The AE signal collected from the centering process of a glass 
lens is shown in Figure 4.  



  

 

 
 

Figure 4. AE signal of a glass lens centering process 
 

4. Results and discussion 

According manual inspection, the lenses corresponding to the 
signals with these features were scraped due to defects.  Signal 
feature 1 was a momentary spike in the signal’s amplitude.  
Correspondingly, an edge crack occurs as the grinding stress 
concentrates on the corner between the edge and surface.  An 
obvious edge crack was on the corresponding lens. Signal 
features 2 and 3 were substantially higher signal amplitudes 
than typical with a clear decrease in gradient as processing 
continued.  The corresponding lenses had poor circularity but no 
edge cracks.  This phenomenon may be caused by the large 
blank sizes of these lenses before processing.  Signal feature 4 
was a momentary decrease in the signal amplitude and 
corresponded to a small edge crack on the lens.  Unlike signal 
feature 1, feature 4 was found to appear when the grinding 
wheel reached an existing crack instead of when it generated a 
new crack. Signal features 5 was momentary spikes in the signal. 
Multiple fine edge cracks were on the corresponding lenses. 
 

 
 
Figure 5. The AE signals from the centering process of 20 quartz lenses 

 
After data process, the overall 30,000 AE signals, collected 

from centering processes of the 20 quartz lenses were used to 
train LSTM and CNN-LSTM prediction models.  The signals were 
normalized and divided into training (20%) and testing (80%) 
sets; after training, the models were evaluated. The results are 
presented in Table 1. 

The prediction accuracy of LSTM was higher, with an R2 of 
0.956660, RMSE of 0.039323, and MAE of 0.022571.  On the 
other hand, the calculation speed of CNN-LSTM was higher than 
did LSTM and an acceptable R2 of 0.906716.  In steady-state 
processing, 20 data points are generated per second.  The LSTM 
model required 300 s per calculation.  This indicates that LSTM 
model predicts the next AE signals of 300 s for 300 s.  The 
objective of applying prediction model can not be realized.  The 
CNN-LSTM model required only 20 s. Hence, CNN-LSTM is more 
suitable for manufacturing processes with short cycle times. 

The training and testing results of CNN-LSTM is presented in 
Figure 2. 
 
 
 
 

Table 1 AE signal prediction results of LSTM and CNN-LSTM 
 

Model 𝑹𝟐 RMSE MAE Time 

LSTM 0.9566 0.0393 0.0226 300 s 

CNN-LSTM 0.9067 0.0577 0.0400 20 s 

 

 
 

Figure 6. Prediction result by CNN-LSTM compared with original signal 

 
Figure 7 is the graphical user interface (GUI) of the monitoring 

and prediction system developed in this research.  The system 
has been applied in the actual production line. 
 

 
 

Figure 7. GUI of monitoring and prediction system 
 

Finally, a batch production was carried out to verify the 
monitoring and prediction system.  50 quartz lenses were 
prepared for the centering processes.  The system kept 
recording with the AE signals collected during batch production.  
The defects of the lenses, including edge cracks and circularity 
errors, were then inspected after processes.  During the process, 
the AE signal features that indicated lens defects were recorded 
to compare with the actual defects.  The prediction result is 
depicted in Figure 8. 
 

 
 

Figure 8. Prediction result of lens defects by monitoring system 

 
According to the results, the defects can be well detected by 

AE signal features in time.  The misidentified defects were 
predicted by the model with AE rms or slopes closed to the 
boundary of detection, as shown in Figure 9.  The edge cracks 
and circularity errors were respectively predicted by the rms and 
slope of the AE signal.  An edge crack with depth over 0.1 mm 
was identified as the AE rms was larger than 20 V, and circularity 
error over 0.1 mm was identified as the AE slope was larger than 
1.5 V/s. 



  

 

 

 
 
Figure 9. Comparison between calculated results and measured results 

 
To verify the effectivity of the system, the method proposed 

by this study and the traditional method were defined and 
conducted.  In the proposed method, the AE signal features were 
recorded, and the features were compared with the lens defects 
after all the centering processes and inspections were done.  In 
the traditional method, inspection is conducted once after 
processing every 5 lenses and takes 10 minutes. 

If a signal feature was marked in the proposed method, or lens 
defects were found once in traditional method, the total 
production time adds 2 minutes that represent an process 
adjustment.  The results of comparison between the proposed 
method and the traditional method were shown in Table 2. 
 
Table 2 Performance evaluation of monitoring system compared with 
traditional method 
 

Method This study Traditional method 

Total marked lenses / 
total scraped lenses 

22 20 

Marking accuracy 72% - 

Yield rate 88% 60% 

Production time 90 mins 

Inspection time - 100 mins 

Process adjusting time 44 mins 20 mins 

Total production time 134 mins 210 mins 

 
Consequently, the proposed monitoring and prediction 

system in this study can effectively improve the yield rate and 
reduce the production time.  Based on the verification results, 
the use of monitoring system enhanced the yield rate from 60% 
to 88% and reduced the total production time by 36.2%.  
Without batch inspection, much time was saved.  Though the 
adjusting time in the proposed method was more than in the 
traditional method, the overall yield rate and production time 
were much better. 

 

5. Conclusion 

This study presented a real-time centering process monitoring 
system by analyzing signal trend and actual manufacturing 
condition.  The real-time monitoring system predicts AE signal 
trends during centering and triggers fault to allow for parameter 
change, grinding wheel change or machine fault.  The early 
warning prevents loss from damage to products, such as crack 
or circularity error, causing scrap.  The algorithms LSTM and 
CNN-LSTM were applied to train an AE signal predicting model, 
whilst comparing the algorithms for their accuracy and 
computational time.  Results show that LSTM has the highest 
accuracy at R2 = 0.95666, but each prediction requires 300 
seconds.  On the other hand, CNN-LSTM only requires 20 
seconds for each prediction while still maintaining an accuracy 
of R2 = 0.906716.  Compared to other algorithms, CNN-LSTM 
possesses the most suitable characteristic for real-time 
centering process monitoring with its short computational time. 

A verification including 50 centering processes of quartz 
lenses was conducted. Based on the results, the proposed 
monitoring system by this study was evaluated and can 
effectively improve the yield rate and reduce the production 
time.  The proposed monitoring and prediction system showed 
an improvement in yield rate from 60% to 88% and reduced the 
total production time by 36.2%. 

This study proves the concept that it is possible to monitor 
and predict the grinding condition of centering process in real-
time.  It’s a major step towards future smart machining in the 
glass lens grinding industry as machines will be able to deduce 
errors autonomously, moving the industry one step forward 
towards Industry 4.0.  Further research on model optimization 
and implementation on CNC machines will be studied in the 
distant future. 
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