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Abstract 
 
Chatter vibrations lead to poor surface finish and tool wear. A reliable chatter detection is prerequisite for its avoidance. The paper 
presents the lathe spindle equipped with displacement sensors used to detect chatter vibrations. The sensors are integrated with the 
machine tool through communication with the CNC control system and protected against cutting fluids and chips. The data collected 
during machining is used to calculate the chatter indicator which is based on the multiple sampling per revolution procedure. The 
use of displacement sensors made it possible to define an additional indicator that allows distinguishing between the appearance of 
chatter vibrations and the entry or exit from the workpiece. This, in turn, allowed the use of an artificial neural network as a machining 
state classifier, characterised by a simple structure which positively contributes to computational efficiency. The network was trained 
and the optimal number of input parameters was elaborated. The neural network is an integral part of the chatter detection algorithm 
which operates on data updated every revolution of the spindle. The use of the neural network eliminated the need to determine 
the threshold value, which was an obstacle to the autonomy of the detection process. Numerous experimental tests have confirmed 
the reliability of the proposed algorithm.  
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1. Introduction   

Regenerative chatter leads to a poor surface finish, premature 
tool wear and in extreme cases machine tool damage. 
Therefore, it is very important to monitor the occurrence of 
chatter vibrations. Researchers use various signals such as 
accelerometers, microphones, AE sensors, force sensors for 
monitoring the cutting process [1]. Frequently accelerometers 
used for chatter detection in turning are attached to the tool [2]. 
This limits applicability to the machining process without 
coolant. Force sensors can be used for effective chatter 
detection [3] but the main limitation is a frequency bandwidth 
and price of dynamometers. Sound signals are used by many 
researchers to detect chatter [4,5]. The main disadvantage of 
microphones is their susceptibility to interference from the 
environment. Hence, their use in industry may not be as 
effective as in laboratory applications.   

Acquired signals are processed to extract features sensitive to 
the chatter occurrence. Frequently chatter detection methods 
are based on threshold criterion i.e. chatter is identified when a 
chatter indicator exceeds a preset threshold value. Establishing 
a threshold value usually requires processing a large, even huge, 
number of signals and classifying them into chatter/stable cases. 
A necessity to perform tests required for establishing a 
threshold value is an obstacle in the autonomation of the 
monitoring process. Several researchers proposed methods for 
automated threshold calculation. Albertelli et. al. [6] used signal 
collected before entering in the workpiece and applied 3𝜎 
principle to autonomously compute threshold value. Li et. al. [7] 
compared the difference of power spectra entropy determined 
for the unfiltered signal and signal with removed harmonics of 
spindle rotational speed. Unfortunately, despite universal 

threshold value, this method cannot be fully automated because 
it requires the identification of natural frequencies prior to the 
cutting process.  

Recently more and more intelligent algorithms are used for 
chatter detection. Intelligent algorithms used for chatter 
detection include support vector machine [8], neural network 
[9], k-means clustering algorithms [10], self-organizing map 
algorithms [11]. These methods provide better robustness and 
adaptability to changing cutting conditions than threshold 
methods but require a lot of data for training procedure. Rahimi 
et. al. [12] presented chatter detection with a hybrid machine 
learning and physics based model. Diagnostic decision is based 
on the output from machine learning algorithm combined with 
energy ratio [13]. Machine learning algorithm distinguishes 
between chatter and transient states whereas physical-based 
approach improved chatter detection accuracy. Although the 
reduction of the network architecture to achieve better 
computational efficiency was performed, the time needed to 
build the spectrogram and perform calculations is still 
significant.  

This paper proposes an application of displacement sensors 
for chatter detection in turning. The sensors are integrated with 
the machine tool through communication with the CNC control 
system and protected against cutting fluids and chips. Because 
the sensors enable measurement of the DC component, entry 
and exit from the material can be distinguished from chatter 
occurrence. Consequently, a very simple neural network could 
be used to determine stable and unstable states. Input 
parameters to a neural network include chatter indicator and its 
standard deviation. Chatter indicator proposed in the paper is 
calculated using once-per-revolution sampling [14,15]. In this 
paper, chatter indicator is constructed which is adapted to 
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handle signals coming from sensors not located in close 
proximity of the cutting process.  

2. Experimental setup 

Cutting tests were performed on AFM TAE 35 horizontal lathe 
equipped with the EddyLAB T05-G-KA-112 displacement 

 
Figure 1. Experimental setup a) location of the sensors, b) spindle with 
built-in sensors, c) electrical cabinet equipped with signals conditioning 
unit, A/D converter and computer, d)scheme of the monitoring system 

sensors integrated with the lathe spindle. The sensors measure 
relative displacements between the headstock and the spindle 
(Figure 1a). The sensors are protected from metal chips and 
cutting liquids enabling industrial application of the system 
(Figure 1b). Signals from the sensors are transferred to the TX2-
24-16-420A signal acquisition and conditioning module. This 
module is connected to the National Instruments A/D converter 
NI9234 and the NI9162 USB module with a sampling frequency 
of 51.2 kHz. This system is connected to a DELL OptiPlex 3090 i5 
computer. The above elements are placed in the machine's 
electrical cabinet, as shown in Figure 1c. The general scheme of 
the chatter detection system is shown in Figure 1d. Figure 2 
presents an illustration of cutting tests carried out to confirm  

 
Figure 2. Basic parameters of the cutting tests 

the effectiveness of chatter detection. The cutting tests were 
carried out for 3 workpieces with 3 sets of cutting parameters. 
The parameters of the cutting tests are given in Table 1.  

Table 1 Cutting parameters used in experimental tests 

 D [mm] L [mm] ap ap ap f [mm/rev] 

 30 190 0.5 1.5 2.0 0.15 

 35 205 0.5 1.5 2.0 0.15 

 40 220 0.5 1.5 2.0 0.15 

N [rpm] 1400 1700 1700  

3. Computation of chatter and machining indicators 

Signals from displacement sensors are denoted to as X(t) and 
Y(t). Then amplitude calculated as: 

𝑅(𝑡) = √𝑋(𝑡)2 + 𝑌(𝑡)2   (1) 
is used to build the Rk matrix. Each row of the matrix 
corresponds to one revolution. The matrix is updated every 
revolution. Assuming that  𝑛𝜏 samples are recorded during one 
revolution and considering 3 subsequent revolutions, this matrix 
takes form: 

𝑹𝒌 = [

𝑅(𝑘−3)𝑛𝜏+1 𝑅(𝑘−3)𝑛𝜏+2 ⋯ 𝑅(𝑘−2)𝑛𝜏

𝑅(𝑘−2)𝑛𝜏+1 𝑅(𝑘−2)𝑛𝜏+2 ⋯ 𝑅(𝑘−1)𝑛𝜏

𝑅(𝑘−1)𝑛𝜏+1 𝑅(𝑘−1)𝑛𝜏+2 ⋯ 𝑅𝑘𝑛𝜏

].  (2) 

Standard deviation estimator is calculated for each column of 
the matrix: 

 𝜎̂:,𝑗 =
𝑇:,𝑗

𝛼3
,     (3) 

where 𝑇:,𝑗 is range of the j-th column, 𝛼3 is statistical constant.  

Finally, these values are averaged to calculate chatter indicator 
at k-th spindle revolution:  

𝐶𝐼(𝑘) =
1

𝑛𝜏

∑ 𝜎̂:,𝑗
𝑛𝜏
𝑗=1 .    (4) 

 
Figure 3. Comparison of the chatter indicator (CI) and standard deviation 
calculated once per revolution during stable cut 

Neural network model applied in the monitoring algorithm uses 
standard deviation of the chatter indicator calculated as: 

𝜎̂(𝐶𝐼(𝑘)) = √ 1

𝑛𝜏−1
∑ (𝜎̂:,𝑗 − 𝐶𝐼(𝑘))

2
𝑛𝜏

𝑗=1 . (5) 

Figure 2 shows chatter indicator (black line) and standard 
deviation calculated for a single column during stable cut. Large 
variability of non-averaged standard deviation standard makes 
it unsuitable for a reliable chatter detection.  
Transient states i.e. entry into the workpiece and exit from the 
workpiece result in an increase of chatter indicator. So, to avoid 
false alarms an additional machining indicator (MI) is 
introduced. Application of displacement sensors enabled 
measurement of the DC component of spindle deflection. This 
component changes during transient states. Hence, when the 
tool enters (or leaves) the workpiece DC component of R(t) 
signal changes at each rotation. This is reflected by the range of 
average values of R(t) calculated over present (k) and two 
preceding revolutions: 

𝑀𝐼(𝑘) = max(𝑅̅𝑘, 𝑅̅𝑘−1, 𝑅̅𝑘−2) − min(𝑅̅𝑘 , 𝑅̅𝑘−1, 𝑅̅𝑘−2), (6) 
where: 𝑅̅𝑘 , 𝑅̅𝑘−1, 𝑅̅𝑘−2 are averages of the rows of 𝑹𝒌 matrix.  
Transient states are identified when MI exceeds threshold 
values determined during air-cutting as: 

𝑈𝐶𝐿(𝑀𝐼) = 𝐷4(3)𝑀𝐼̅̅ ̅̅
𝑎𝑐 = 2.575𝑀𝐼̅̅ ̅̅

𝑎𝑐.   (7) 



  

 
Figure 4. Displacement amplitude, chatter indicator (CI) and machining 
indicator (MI) - identification of tool entry 

Figure 3 presents signal R(t), chatter indicator CI and machining 
indicator MI during stable cut. As tool enters the workpiece 
machining indicator exceeds threshold value (red line). Hence, a 
transient state is identified and corresponding chatter indicator 
is neglected. The decrease of the machining indicator below the 
threshold means full entry into the material. Further 
classification of the state i.e. labelling states as stable or chatter 
is performed by the neural network.  
 
4. Artificial neural network    
 

The assumption when selecting the structure of the neural 
network was its simplicity. Low number of operations performed 
by a neural network enables real-time operation of the 
monitoring system. Moreover, it requires small amount of data 
for teaching purposes which is beneficial when implementing 
the monitoring system in industrial plants producing small 
production batches. Limitation of detectable states to two 
(stable and chatter) is a major contributor to network 
simplification. Hence, the neural model consists of only one 
perceptron – general schema of the perceptron and transfer 
function used are shown in Figure 5, 

 
Figure 5. Neural network model 

 
4.1. Selection of features 

   Time domain features were selected as the inputs to the 
neural network. Selected features include mean value, standard 
deviation, variance of chatter indicator and Y axis displacements. 
These features were calculated from signals corresponding to air 
cut and steady-state cut (Table 2). The cutting tests used for 
training and validation of the network were carried out with 
parameters given in Table 1. Hence, 9 different cutting 
configurations were used. Each configuration was repeated 3 
times which gives 27 cutting tests. Cutting tests with depth of 
cut equal 0.5 mm were stable (9 cuts), whereas remaining 18 
cuts (ap=1.5; 2.0 mm) were unstable. Training of the neural 
network was performed using 18 cutting tests (12 unstable and 
6 stable). The rest of the data (6 unstable and 3 stable cuts) were 
used for the neural network validation. Initially, the net with 12 
input was designed and trained. Then the number of inputs was 
gradually reduced to two inputs. Finally, 10 models with 
different combinations of inputs were subjected to training 
procedure.  

 
It turned out that nets with only two inputs (Model no. 9 and 10) 
could not be successfully trained. Therefore, in order to 
minimize number of inputs, the neural network with 4 inputs 
(Model no. 7) was chosen for further investigation. Figure 6 
shows mean values of chatter indicator during air cutting and 

 
Figure 6. Values of chatter indicator during air cutting (Y-axis) and cutting 
(X-axis) during stable (blue) and unstable (red) cuts 

actual cutting. Blue and red markers correspond to stable and 
unstable cuts respectively. These two sets intersect which 
means that such a combination of input parameters is not 
capable of distinguishing between stable and unstable cuts. 
Obviously, determination of the universal threshold values is 
impossible due to observed overlap in chatter indicator values 
for stable and unstable cuts.  

5. Application of the method for on-line chatter monitoring      

Monitoring of the cutting process can be described by the 
following steps: 

1. Start of the cutting. The machine executes instructions 
from the G-code. One of the preliminary instructions 
executed after is initialization of the monitoring process 
(M500). Sensors begin to record signals. Matrix 𝑹𝒌 is 
built. 

2. Check whether 𝑀𝐼(𝑘) exceeds threshold value. 
Exceeding threshold value means entry into the 
workpiece. Data recorded before tool entrance is used to 
calculate mean value and standard deviation of 
𝐶𝐼𝑎𝑖𝑟_𝑐𝑢𝑡𝑡𝑖𝑛𝑔(𝐶𝐼̅̅ ̅

𝑎𝑖𝑟_𝑐𝑢𝑡𝑡𝑖𝑛𝑔, 𝜎̂(𝐶𝐼𝑎𝑖𝑟_𝑐𝑢𝑡𝑡𝑖𝑛𝑔)).  

3. After 𝑀𝐼(𝑘) decrease below threshold value, chatter 

indicator CI(k) and standard deviation  𝜎̂(𝐶𝐼(𝑘)) are 

calculated at each workpiece rotation. These values along 
with the 𝐶𝐼̅̅ ̅

𝑎𝑖𝑟_𝑐𝑢𝑡𝑡𝑖𝑛𝑔  and 𝜎̂(𝐶𝐼𝑎𝑖𝑟_𝑐𝑢𝑡𝑡𝑖𝑛𝑔)) are fed to the 

neural network. The neural network returns one from 
two possible states: “stable” and “chatter”.  

4. If chatter is detected the monitoring algorithm changes 
the spindle speed to match rotational frequency 
harmonic with natural frequency by taking into account 
permissible cutting speed as 𝑁𝑜𝑝𝑡 = 60fc/k with 𝑘 =

1,2, …, fc – chatter frequency. 

Table 2 Tested neural network models 



  

Otherwise, the spindle speed is kept constant. In both 
cases four input parameters are continuously fed to the 
neural network (Step 3 is repeated). 

5. Check whether 𝑀𝐼(𝑘) exceeds threshold value. 
Exceeding threshold value means exit from the 
workpiece.  

 
Effectiveness of the chatter monitoring was verified using all 

data employed for training and validation. Also additional 9 
cutting tests were used. It must be noted that according to the 
algorithm presented above, the parameters fed into the neural 
network are updated every rotation contrary to the training 
process when a single value of each parameter was used.  

 

 
Figure 7. Detected machining states during unstable cut. Cutting 
conditions: ap=1.5 mm, N=1700 rev/min, D=35 mm, L=205 mm  

 
Figure 8. Detected machining states during stable cut. Cutting 
conditions: ap=0.5 mm, N=1400 rev/min, D=35 mm, L=205 mm 

 
Figure 9. Detected machining states during unstable/stable cut. Cutting 
conditions: ap= 0.5mm, N=1800 rev/min, D=40 mm, L=205 mm 

Figures 7-9 present performance of the method. The machining 
indicator detects entrance and exit from the workpiece. Then 
the neural network is activated to qualify state as stable or 
unstable. It is observed in Figure 9 that NN returns value “1” 
(chatter) after the tool leaves the workpiece. This is associated 
with rapid motion with high acceleration and deceleration 
causing vibration but having no effect on DC component of the 
displacement signals. Hence the machining indicator remains 
below threshold value and the state is qualified as “air cut”.  

5. Conclusion      

The requirements for the proposed chatter monitoring system 
were integration with the machine tool, reliability of inference, 
computational efficiency and autonomy. Integration with the 

machine tool means communication with the machine tool's 
CNC system and a sensors location that does not limit the 
machine tool's machining capabilities including use of cutting 
fluids. The proposed system meets these conditions, which 
made it impossible to locate the sensors close to the cutting 
point. However, the proposed CI, thanks to averaging, allows 
reliable evaluation of the process state. Autonomy of the system 
was achieved by using the neural network. An additional 
advantage of the proposed neural network is simplicity, which 
translates into computational efficiency.   
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