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Abstract

Surface quality evaluation of internal surfaces is vital while challenging. In this paper, we proposed a novel and non-destructive 
method for internal surface roughness measurement based on a magnetic tool and a data-driven model named fuzzy broad learning 
system (FBLS). The magnetic tool is placed on the workpiece's inner surface and dragged by an external magnet. The force between 
the tool and the workpiece is recorded and used as input for the FBLS. FBLS combines the logical reasoning ability of a fuzzy system 
with the self-learning ability of a neural network. It is suitable for nonlinear and uncertainty modelling, and the computational 
efficiency is high. Experiments show that this method is suitable for workpieces with surface roughness (Ra) larger than 1 μm and its 
average measurement error is only 10.1%, which is adequate for the quality control of most engineering surfaces. This method may 
be further applied to surface quality evaluation of additively manufactured internal surfaces and complex channels. 
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1. Introduction 

Internal surfaces are widely used in daily life and industries. 
Representative examples include the tubes in aeroengines, 
sanitary pipes in the semiconductor industry, conformal cooling 
channels in precision moulds, manifolds in automobiles, 
waveguides in communication devices, etc. These internal 
surfaces are commonly seen as excellent carriers for gas, fluids, 
or electromagnetic waves [1–3]. The surface quality of these 
internal surfaces significantly affects their service performance 
[4,5]. However, there are limited methods to measure the 
surface finish of these internal surfaces because conventional 
measurement tools, e.g., a stylus probe or a microscope, cannot 
access the enclosed space. The most commonly used method is 
to cut the sample and expose the internal surface so that 
conventional measurement devices can be employed, which, 
however, is a typical destructive measurement method. In terms 
of the tubes with large diameters, the stylus probe can be 
inserted into them and conduct the profile scanning. 
Alternatively, an endoscope can also be put inside a tube to 
measure the profile via white-light interferometry [6]. Some 
researchers converted the internal measurement to external 
measurement by a silicone replica [7]. This method is only 
suitable for some simple tubes and still needs the assistance of 
a profilometer or a confocal microscope. Regarding more 
complex components with small openings,  X-ray computed 
tomography (X-ray CT) can be used to obtain their volumetric 
information via scanning, reconstruction, and data visualization 
[8,9]. The reconstructed 3D model of the component contains 
the surface topography information of the internal features. 
However, the resolution of existing X-ray CT is usually larger than 
5 μm and the operating expense is extremely high. Another 

indirect and non-destructive evaluation method for the surface 
quality of pipes is by analyzing the acoustic emission (AE) signal 
which is generated by the flowing liquid [10]. The surface state, 
either rough or smooth, can be distinguished by comparing the 
extracted features of the AE signal. Nevertheless, it is impossible 
to provide an accurate value of the surface roughness. 
Therefore, a reliable, precise, low-cost, and non-destructive 
measurement method needs to be developed to tackle the 
challenge in surface quality evaluation of internal surfaces. In 
this paper, an indirect measurement system based on a 
magnetic tool and a fuzzy broad learning model is proposed. A 
sphere magnet is put inside the workpiece. An external magnet 
is used to drive the sphere magnet to slide on the surface to be 
evaluated. A dynamometer is employed to record the force 
signal, which will be the input data into a developed fuzzy broad 
learning system (FBLS). This FBLS system will return the surface 
roughness value of the workpiece. 

2. Methodology

2.1 Measurement principle 
The working principle of the proposed internal measurement 

method (hardware and software) is illustrated in Figure 1. In the 
hardware setup, the workpiece tube is mounted on a 
dynamometer which can measure the force exerted on the 
workpiece. A sphere magnet is placed inside the workpiece and 
an external magnet is used to drive the sphere magnet. The 
linear motion of the sphere magnet will produce a normal force 
(Fn) and a friction force (Ff) which will be recorded by the 
dynamometer. The force measured by the dynamometer is then 
sent to a fuzzy broad learning system (FBLS) [11] to generate the 
surface roughness data. 



Figure 1. Working principle of the developed internal measurement 
technique: (a) schematic of the hardware and (b) the proposed FBLS 

2.2 The developed fuzzy broad learning system (FBLS) 
The basic architecture of FBLS is shown in Figure 1(b). Suppose 

that the FBLS consists of �  fuzzy subsystems and �
enhancement node groups, in which there are ��  fuzzy rules in 
the �th fuzzy subsystem, and there are ��  enhancement neurons 

in the �th enhancement node group. Given a training sample 
data set is represented as � = {�,�} , � = [��, ��, ⋯ , ��]� ∈
ℝ�×�  and � = [��, ��, ⋯ ,��]� ∈ ℝ�×�  represent the input 
data and target output, respectively where �� =
[���, ���, ⋯ , ���], � = 1,2,⋯ ,� . �  represents the number of 
training samples and � is the dimension of features for input 
data. 

At first, the input �� = [���, ���, ⋯ , ���] is mapped to the �th 
fuzzy subsystem by using the first-order Takagi-Sugeno-Kang 
(TSK) fuzzy system. The fuzzy if-then rule in the � th fuzzy 
subsystem can be represented as:  

if ���  is ��
� , ���  is ���

� , …, and ���  is ���
� , then one can get 

���
� = ��

�(���,���, ⋯ , ���), where � = 1,2,⋯ ,�� . 
The consequent part of the �th fuzzy rule can be defined by 

Eq. (1):  

���
� = ∑ ���

� ���
�
���                                  (1) 

where ���
�  are randomly generated coefficients from a uniform 

distribution [0,1]. 
For the �th fuzzy subsystem, the fire strength of the �th fuzzy 

rule is given by Eq. (2): 

���
� = ∏ ���

� (���)
�
���                               (2) 

where ���
�  is the Gaussian membership function corresponding 

to a fuzzy set ���
� , which is denoted by Eq. (3):  

���
� (���) = �

��
�������

�

���
� �

�

                                   (3) 

where ���
�  and ���

�  represent the center and width of the 
Gaussian membership function, respectively. For the �th fuzzy 
subsystem, the K-means method on the training sample input 
data is used to obtain ��  clustering centers, which are used to 

initialize the centers ���
�  of the Gaussian membership function. 

And for all fuzzy subsystems, the value of ���
�  is set to 1.  

After that, the weighted fire strength of each fuzzy rule can be 
computed using Eq. (4): 

���
� =

���
�

∑ ���
���

���

                                             (4) 

Before defuzzification by the TSK fuzzy subsystem, the 
intermediate output vector of the �th fuzzy subsystem for the 
�th training sample can be expressed by Eq. (5): 

��
� = [���

� ���
� ,���

� ���
� , ⋯ , ����

� ����
� ]                      (5) 

And the intermediate output matrix of the �th fuzzy subsystem 
for all training samples can be denoted by Eq. (6):  

�� = [��
� , ��

� ,⋯ , ��
� ]�                              (6) 

Therefore, the intermediate output matrix for all fuzzy 
subsystems can be shown by Eq. (7): 

� = [�� ,��, ⋯ ,��]                                     (7) 
After that, the intermediate output matrix �  is fed into the 

enhancement nodes for nonlinear transformation. Then, the 
output matrix of the enhancement layer can be represented by 
Eq. (8): 

� = [��,��, ⋯ ,��]                                    (8) 

where �� = �����
�

+ ��
�
�, � = 1,2,⋯ ,�. ��

�
 and ��

�
 are the 

weights and bias terms respectively, which are randomly 
generated from [0, 1] with proper dimensions. � is an activation 
function and is usually set as a hyperbolic tangent function 
(���ℎ). 

Since the defuzzification output of each fuzzy subsystem and 
the output of the enhancement layer are transmitted to the top 
layer together, the defuzzification output of the � th fuzzy 
subsystem for the �th training sample can be expressed by Eq. 
(9): 
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where the parameter ��
�  is introduced to adjust the �th fuzzy 

rule, and can be defined by Eq. (10): 

�� = [��
� ,��

� , ⋯ ,���
� ]�                                 (10) 

The above formula can be simplified to Eq. (11): 

��
� = ��

���                                                   (11) 
For all training samples, the defuzzification output of the �th 

fuzzy subsystem is Eq. (12): 

�� = [��
� ,��

� , ⋯ ,��
� ]� = ����                      (12) 

Then, the defuzzification output of all fuzzy subsystems can be 
aggregated by Eq. (13): 

� = ∑ ���
��� = ���                                     (13) 

where �� = [��,��, ⋯ ,��]�. 
In the end, the defuzzification output � of all fuzzy subsystems 

and the output �  of enhancement node groups will be 
concatenated into a matrix to obtain the final output of FBLS, 
which can be expressed by Eq. (14): 

�� = � + ��� = ��� + ��� = [� �] �
��

��
�           (14)   

where ��  denotes the weight matrix from the enhancement 
layer to the top layer. 

Let � = [�,�], � = [��� ,��]� , Then ��  can be abbreviated 
by Eq. (15): 

�� = ��                                                         (15) 
Given the actual training target �, the weight matrix � from 

the hidden layer to the final output layer can be calculated by 
ridge regression using Eq. (16): 

� = (��� + ��)�����                              (16) 
in which �  denotes an identity matrix with proper dimensions 
and � is a nonnegative constant for regularization. 

3. Experiments and validation

3.1 Experimental setup  
A measurement setup (Figure 2) is built based on the 

schematic in Figure 1(a). An external magnet is fixed on the 
moving axis of a three-axis automatic stage (Sherline Products 
Inc). The workpiece is an Al6061 plate with milled grooves to 
simulate the internal surface of a tube. It is mounted on a fixture 
connecting a dynamometer (Kistler 9256C). A sphere magnet 
with an 8-mm diameter is placed on the groove. Due to the 
magnetic force, the sphere magnet can be driven to slide on the 
groove surface while the dynamometer records the force 
interactions simultaneously. It should be noted that the 
dynamometer may be replaced by cheaper and portable sensors 
(e.g., acceleration/vibration sensors) in practical applications.  



Figure 2. Experimental setup for data acquisition

3.2 Workpiece preparation and data acquisition      
Totally 8 workpieces are prepared by end milling at a Makino 

V55 vertical milling machine. Three grooves are cut in each 
workpiece and a total of 23 grooves are machined (one groove 
failed due to tool breakage). The milling parameters i.e., spindle 
speed, feed rate, and tool wear condition, are varied to generate 
grooves with a large range of surface finish. Specifically, the 
varying of tool wear conditions is achieved by using milling tools 
with different VB values. After milling, the groove surfaces are 
scanned by a laser confocal microscope (Olympus LEXT 
OLS5000) and the surface roughness Ra is measured with a cut-
off length of 0.25 mm. Three measurements are conducted for 
each groove. The resultant surface roughness ranges from 0.193 
μm to 9.787 μm, covering the typical finish of engineering 
surfaces [12]. 

To acquire the force signal for the developed FBLS, the sphere 
magnet is driven to slide on the groove for 20 mm with a feed 
rate of 100 mm/min. And the corresponding force is recorded by 
the dynameter with a sampling frequency of 50 kHz. The 
parameters of the data acquisition process are listed in Table 1.  

Table 1. Parameters of the data acquisition process for surface 
roughness measurement  

Parameters Values 

External magnet  NdB G50 block magnet 20 mm 

 10 mm  6 mm 
Sphere magnet  NdB G35 sphere magnet with 

8 mm diameter 
Workpiece  A6061 Aluminium plate, 8 pcs, 

and 23 grooves 
The gap distance (mm) 5 
Scratching distance (mm)  20 

Feed rate (mm/min) 100 

Sampling rate (kHz) 50 

Figure 3. Segmentation of the force signal: (a) Fx, (b) Fy and (c) Fz 

3.3 Pre-process of the collected force data 
The X, Y, and Z force signals are effectively segmented by 

removing the near-zero sections at the beginning and the end, 
as shown in Figure 3. Besides, 8 representative time-domain 
features are extracted from the force signals in the three 
directions of X, Y, and Z, respectively, as the input of the model, 
with a total of 24 features, as shown in Table 2. 

Table 2. Time-domain features of the force signals 

No. Feature Equation 

1 Absolute average �� =
�

�
∑ |��|
�
���

2 Variance ���� =
�

�
∑ (�� − �̅)��
���

3 Standard deviation ���� = √����

4 Peak-to-Peak value ��� = ���(��) −���(��)

5 Kurtosis ���� =
∑ (����̅)�/��
���

�∑ (����̅)�/��
��� �

�

6 Skewness ���� =
∑ (����̅)�/��
���

�∑ (����̅)�/��
��� �

�
��

7 Root mean square ���� = �
�

�
∑ ��

��
���

8 Shape factor ��� =
����

��

4. Results

In this case study, a total of 23 groups of the force data set 
were collected, of which 16 data set were randomly selected for 
model training, and the remaining 7 samples were used for 
model testing. 

As seen in Table 2, the time-domain features have different 
dimensions and unit magnitudes. Thus, it is necessary to 
normalize the data using a standardized transformation method. 
Herein the min-max standardization approach is adopted, as 
expressed in Eq. (17): 

��� =
�������

���������
                                               (17) 

where ����  and ����  represent the maximum and minimum 
values of feature �, respectively. 

To verify the feasibility of the model in predicting the surface 
roughness, the root-mean-square error (RMSE), mean absolute 
error (MAE), and mean absolute percentage error (MAPE) can 
be selected as the evaluation performance indicators 
respectively, which are expressed in Eqs. (18–20): 

���� = �
�

�
∑ (�� − ���)��
���                                (18) 

��� =
�

�
∑ |�� − ��� |�
���                                       (19) 

���� =
�

�
∑ �

������

��
��

��� × 100%                         (20) 

in which � is the number of observations, ��  and ��  represent 
the actual and predicted values for sample �, respectively. 

Figure 4 presents the prediction results of the surface 
roughness (Ra) of the grooves by FBLS, and the values of the 
predictive errors are listed in Table 3. The predicted Ra shows 
good agreement with the experimental Ra for all evaluation 
criteria. Particularly, the model shows good predicting accuracy 
when the surface roughness Ra is larger than 1 μm if the RMSE 
and the MAE are employed as the evaluation criteria (Actually, 
there is no difference by using RMSE and MAE as the evaluation 
criteria), as shown in Figure 4(a) and (b). On the other hand, the 
model using MAPE can provide accurate predictions for the 
whole range of different surface finish except the Testing No. 6 
(Ra 3.163 μm), as seen in Figure 4(c). Figure 5 shows the 
variation of RMSE against the numbers of fuzzy subsystems and 
fuzzy rules. With the increase in the number of fuzzy subsystems 
and fuzzy rules, the RMSE tends to decrease. Particularly, the 
influence of fuzzy rules on the RMSE is more significant. In a  



Figure 4. Measured and predicted surface roughness Ra under different evaluation criteria: (a) RMSE, (b) MAE and (c) MAPE.  

word, the investigations demonstrate that the proposed method 
is easy to implement and can yield a promising predicting 
outcome compared with the X-ray CT method [9] and the AE 
method [10]. The proposed method also exhibits great potential 
to measure the surface roughness of complex internal surfaces. 

Table 3. Measured surface roughness Ra and the predictive errors under 
different evaluation criteria i.e., RMSE, MAE and MAPE, respectively  

Testing 
No. 

Measured 
Ra (μm) 

By RMSE 
（%）

By MAE
（%）

By MAPE
（%）

1 0.346 111.4 111.4 39.1 

2 1.056 33.4 33.4 14.6 

3 1.066 13.4 13.4 7.2 

4 1.630 14.2 14.2 11.2 

5 2.206 18.5 18.5 19.6 

6 3.163 1.0 1.0 56.1 

7 3.659 3.5 3.5 12.4 

Figure 5. Dependence of RMSE values against the number of fuzzy 
subsystems and the number of fuzy rules 

5. Conclusion Remarks

Leveraging the advantages of machine learning, this paper 
proposed novel internal surface measurement methods via a 
magnetic ball scratching on the workpiece surface. A measuring 
setup was built and Alumiunium workpieces with milled grooves 
were employed as the specimens. The force interaction between 
the magnetic ball and the workpiece was obtained and pre-
processed before being fed into a proposed fuzzy broad learning 
system (FBLS). By training the FBLS with limited data sets, this 
model demonstrates an average measurement error (using the 
measured Ra by a stylus profilometer as a reference) of only 
10.1% for the surfaces with a roughness larger than 1 μm Ra, 
though the errors for finer surfaces are inadequate. The results 
indicate that the current measuring technique may be helpful to 
additively manufactured raw components that exhibt a relative 

rough surfaces. Future work will focus on integrating other 
signals (acceleration/vibration which uses much cheaper and 
more portable sensors rather than the dynamometer) as the 
input and exploring other machine learning models to improve 
the measuring accuracy of fine surfaces.  
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