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Abstract 

Advances in computer vision and in-situ monitoring, facilitated by visual sensors, enable the acquisition of extensive image datasets 
from the additive manufacturing (AM) process. These datasets hold significant potential for improving the quality of AM through the 
application of machine learning techniques. Despite the increased availability of such data, subsequent data analytics such as 
classification and labelling, are typically manual which does not scale and allows errors as a result of the manual process.  
This paper provides a deep learning model developed for classification of image data from the AM process, along with the relevant 
methodology for training, labelling and associated experiments. We present an approach that employs a convolutional neural 
network (CNN) based classifier in combination with transfer learning and active learning strategies and we explore the minimum 
number of labelled images required to achieve convergence during the training process, with a focus on optimising data efficiency. 
Our classifier serves as a robust foundation, allowing further advances in the labelling mechanism which involves leveraging semi-
supervised learning techniques with the integration of human-in-the-loop. This approach augments and refines the labelling process, 
capitalising on the strengths of both automated learning and human supervision to further enhance the accuracy of the labelling, the 
performance of the model and the applicability of our approach in the domain of additive manufacturing. 
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1. Introduction 

Given rapid developments in data collocation in the domain of 
Additive Manufacturing (AM), the datasets developed from such 
collected data have potential for determining the quality of the 
manufactured output and the detection of defects through the 
use of Machine Learning (ML) during the manufacturing process. 
However, rather than concentrating on the method for data 
collection, this paper focuses on the processing and utilization 
of image data in ML applications which support AM. 

Large and open-source datasets of annotated images 
containing up to millions of training examples such as ImageNet 
[1] which contains more than 14 million annotated images and 
COCO (Common Objects in Context) [2] which contains more 
than 200 000 labelled images, have allowed machine learning to 
develop hugely in recent years. This is partly due to the fact that 
the datasets are open, easily available and re-used by many 
researchers. However, to create such datasets specific to the 
domain of AM is still difficult because acquiring process 
monitoring data with annotations is cost-prohibitive in AM as 
shown by Manan and Shao [3]. A recent survey on the topic of 
image datasets [4] clearly states that sample images from the 
AM process, labelled with annotations of microstructure defects 
in the manufacture, are often difficult, expensive, and time-
consuming to obtain, which creates challenges in the application 
of vision-related machine learning in AM. 

In many practical situations, collocated image data from AM 
processes have a limited number of properly labelled samples 
and a large volume of unlabelled samples. Some researchers 
have named this situation the ``Small Data Challenge in Big Data 

Era” [5]. Consequently, it is desirable to have a machine learning 
methodology that can begin with the utilisation of the small 
number of labelled samples then further leverage the large 
number of unlabelled data to develop more labelled samples 
from unlabelled images. This helps to improve the performance 
of the ML model to achieve higher accuracy. 

To overcome the challenge of providing a neural network 
model with limited labelled data samples, we present a method 
that applies transfer learning and fine-tuning on a convolutional 
neural network (CNN)-based neural network model to achieve 
improved classification on the image samples. Then, based on 
the outcome of the initial classification model, our methodology 
then involves active learning algorithms, which identifies the 
most informative data samples for the model to learn from as a 
higher priority. This reduces the number of labelled samples 
required in the training process. Finally, by utilising the 
combination of an active query strategy and a semi-supervised 
learning technique with Human-In-The-Loop (HITL) features, we 
perform automatic labelling using the model to generate larger 
datasets of labelled images from unlabelled samples. 

2. Background knowledge

Transfer learning is a method that performs training a neural 
network model using data from a source domain then later 
applying the trained model to a target domain, different from 
the source. This allows rapid progress in re-training and 
significantly reduces the required number of training samples in 
the target domain. This is commonly used in computer vision 
tasks such as classification to support improved performance in 
domains which are data-poor. In recent years, transfer learning 



has proved to be effective in the task of defect classification in 
AM, such as the work presented in [6] and [7] where transfer 
learning and fine-tuning were applied to training a CNN based 
neural network architecture.  

Active learning [8] is a technique for labelling data that selects 
and prioritises the most informative data points for an annotator 
to label. Such prioritised data points have the highest potential 
impact on the supervised training of a machine learning model, 
thus improving the overall training process. The combination of 
transfer learning and active learning allows leveraging small 
amounts of labelled data to improve the performance of the 
training process. 

Semi-Supervised Learning [9] leverages both labelled and 
unlabelled data to improve model performance. Among Semi-
Supervised Learning techniques, Pseudo-Labelling [10], stands 
out as a simple but highly efficient method, which can be 
summarised in 3 distinct stages: 

1. Using available labelled data, build an initial model. 
2. Generate pseudo labels for the unlabelled data using the 

model. 
3. Further train the model using both the original labels and 

pseudo labels. This additional training phase fine-tunes 
the model based on the augmented dataset. 

However, it has 3 major drawbacks and limitations as follows:  
1. If the initial model is poor or biased, pseudo-labels may 

also be inaccurate, leading to a propagation of errors.  
2. Significant distribution mismatches between classes in 

the training may lead to the class imbalance issue. 
3. The lack of feedback or correction mechanisms for 

mistakes on labels brings a risk of noise amplification. 
Methods to apply these techniques in our approach and 
approaches to address related problems are illustrated in the 
next section.  

3. Method

Our methodology involved the creation of a CNN-based initial 
model for classification followed by active learning-assisted 
training and semi-supervised labelling, with human supervision. 

Figure 1. Architecture of our model based on VGG 16 and fully connected 
layers.  

3.1. CNN based initial model 
 Our CNN based initial model relies on transfer learning in 

which 13 convolutional layers from a pre-trained VGG16 model 
[11] are used for feature extraction, the weights having been 
trained using ImageNet data. After the convolutional layers, 2 
fully-connected layers with a ReLU activation function are added 
followed by 1 fully-connected layer as the output layer using 
Sigmoid as the activation function, since the targeted dataset is 
divided into 2 classes for binary classification. The architecture 
of this CNN based initial model is shown in Figure 1. The 
implementation was conducted using Python 3, Keras and scikit-
learn machine learning packages within the Google Colab 
environment. 

3.2. Fine-tuning with image datasets
To investigate the adaptability of the CNN-based model, 3 

datasets with 8 different types of patterns have been tested 

individually by applying fine-tuning on the model. The 3 image 
datasets are emission images [12], DAGM patterns [13] and 
images from Selective Laser Sintering (SLS) [8]. Figure 2 shows 
examples of patterns from each dataset.   

Figure 2. Examples of patterns from emission, DAGM and SLS 

The emission image dataset is developed from the emission 
data collected by the InfiniAM monitoring suite from a Renishaw 
3D printer during printing of Ti6Al4V parts. After post-
processing, the dataset consists of 150 negative and 150 positive 
samples. 

The DAGM dataset is inspired by problems from industrial 
image processing, where automatic visual defect detection has 
the potential to reduce the cost of quality assurance 
significantly. The DAGM datasets involves 6 different patterns 
while each pattern is divided into 2 classes: defect (150 samples) 
and normal (1000 samples). This dataset offers support to test 
the adaptability of our deep learning approach in the early 
stages when large-scale annotated image datasets are not 
available in the AM domain [14]. 

 The SLS dataset contains 4,000 images, manually divided into 
2 defect detection classes. The images in this dataset are 
separated into 3 subsets for training (2,000), testing (1,000) and 
validation (1,000). The dataset is used in later stages of our 
research on active learning assisted training and semi-
supervised learning labelling. 

Table 1. hyperparameters used for the training/tuning of the deep 
learning model  

 During the fine-tuning process of the model, combinations of 
hyperparameters are investigated through multiple tests using 
different settings. Tuning hyperparameters involves adjusting 
the optimiser, learning rate, batch size and training epochs. We 
use 3 optimisers namely Adaptive Moment Estimation (Adam), 
Stochastic Gradient Descent (SGD) and Root Mean Square 
Propagation (RMSprop) in combination with different ranges of 
learning rate, batch sizes and training epochs. The cost function 

Name Type/Value Description

Optimizer
Adam, SGD, 

RMSprop 

Optimizers are used to change the 
attributes of the neural network to 
reduce the losses 

Loss 
function

binary cross 
entropy 

Loss function computes the quantity 
that a model should seek to minimize 
during training 

Learning 
rate

10-2 to 10-5

The step size at each iteration while 
moving toward a minimum of a loss 
function during the training process 

Batch size 4, 32, 64 
The number of training samples 
utilized in one update of the model's 
parameters. 

Evaluation 
metric

Accuracy, 
Loss 

Function to judge the performance 
of the model 



used in all tests is binary cross entropy. The tested values for the 
hyperparameters during the tuning process with relevant 
descriptions for each are shown in Table 1. Moreover, to combat 
overfitting, we introduced weight regularisers to the two dense 
layers employing the ReLU activation function, as previously 
mentioned. We applied weight decay regularisation, also 
referred to as L2 regularisation, which calculates the sum of 
squared weights. The hyperparameter tuning for weight decay 
regularisation spanned a range from 10-1 to 10-4 and was tested 
multiple times until overfitting issues no longer surfaced during 
training and validation. This tuning process aimed to keep a 
balance between model complexity and generalisation ability, 
ensuring the model's robustness. 

Classification results on different image patterns are 
presented in Table 2. It is worth noting that the relationship 
between hyperparameters and performance is problem-
dependent, and the effectiveness of a specific hyperparameter, 
such as batch size, can vary for different datasets and models.  

Table 2. Classification results from the CNN based model with transfer 
learning and fine-tuning 

Patterns Avg. Val 
Accuracy 

Avg. Val 
Loss 

Training 
(epochs) 

Emission 0.981 0.03 200 

DAGM1 0.964 0.09 200 

DAGM2 0.983 0.03 200 

DAGM3 0.962 0.10 200 

DAGM4 0.965 0.09 200 

DAGM5 0.982 0.04 200 

DAGM6 0.959 0.09 200 

SLS 0.979 0.05 200 

3.3. Active learning to further optimise training  
With the setting up of the CNN based classifier model that 

effectively uses domain transfer principles across the additive 
manufacturing image datasets, our research makes progress to 
extend beyond conventional training methodologies. The active 
learning approach introduced a query strategy to the training of 
the classification model, enabling it to iteratively improve its 
performance by strategically selecting and labelling the most 
informative data samples to be used. This iterative approach 
allowed us to make efficient use of the labelled data and to 
optimise the performance of the model through active data 
selection. This approach was conducted through a series of 
steps, performing a structured and iterative approach with the 
following key stages: (1) active sample section, (2) query for 
label, (3) train with queried sample, and (4) validate for current 
query iteration. The cycle iterates until a human supervisor 
decides to complete the training phase when validation accuracy 
achieves a target level. Here we apply a pool-based sampling 
scenario and an uncertainty sampling query strategy [8]. This is 
the most commonly used query strategy to start generalised 
sampling on AM image datasets. In our previous work [15], this 
approach has been proven as highly sample-efficient on the SLS 
image dataset by Westphal et al. [7] during training of the model 
and achieves an accuracy level of over 98% in validation. This 
query strategy is also utilised in the development of our semi-
supervised labelling method to address class imbalance and 
assist on the feedback mechanism with HITL.  

3.4. Labelling using semi-supervised learning with HITL
The labelling mechanism involves leveraging semi-supervised 

learning techniques with the integration of HITL features, aims 
to augment and refine the labelling process by capitalising on 
the strengths of both automated learning and human 
supervision. This further enhances the accuracy of labelling, the 
performance of the model and the applicability of the approach 

in the domain of additive manufacturing defect detection. Our 
proposed labelling approach can be summarised into the 
following 4 steps: (1) Generate pseudo-label using the trained 
classifier. (2) Active selection according to uncertainty and 
human correction on the incorrect labelled samples in the 
selected pseudo-labels. (3) Create a new training batch by re-
sampling to address the class imbalance issues then update the 
classifier using the training batch. (4) Evaluate the performance 
of the updated classifier on the rest of the pseudo-labelled data 
and the original validation dataset.  

3.5. Class imbalance issue 
When the labels obtained for model training are a significant 

distribution mismatch between classes, the trained models 
show a bias towards the majority class. Consequently, instances 
belonging to the minority class tend to misclassify at a greater 
rate. This is particularly problematic when the class of interest 
corresponds to the minority class. In AM datasets, defects 
mostly show within the minority subset of the total data 
population. For this reason, when forming a new set of training 
data from the results of pseudo-labelling, the class imbalance 
problem should be considered in order to avoid over emphasis 
on the major class.  

To address this issue, we present an approach that combines 
uncertainty sampling with image data augmentation. This 
method places a strong emphasis on selecting the most 
informative samples, by identifying instances where the model 
exhibits uncertainty in its predictions. These informative 
samples are then systematically re-sampled using image data 
augmentation techniques, including transformations such as 
rotation, scaling, flipping, and cropping according to the relevant 
data structures. The objective is to generate a diverse set of new 
samples while preserving spatial correlations and image quality. 
This approach stands out as more preferable compared to 
synthetic image data generation, especially in the context of 
additive manufacturing, where data reliability and fidelity are 
extremely important. 

4. Experimental results

In this section, we introduce our experimental process 
encompassing the labelling mechanism specifically focusing on 
an imbalanced dataset that developed from the SLS dataset. The 
sequence commences with the generation of pseudo labels 
utilising the initial classifier. Subsequently, active sample 
selection and human correction steps are employed to curtail 
the count of incorrectly assigned pseudo labels. Following this 
correction phase, the rectified samples are re-sampled to create 
a balanced batch, which is then used to further fine-tune the 
classifier.  

4.1. Experiments on the imbalanced dataset 
   Experiments are conducted to evaluate the performance of 
our approach on an imbalanced dataset. The imbalanced 
dataset is derived from the testing dataset, which initially 
consisted of a balanced set of 500 defect samples and 499 
normal samples (out of the 500 normal samples, one image was 
corrupted). For the imbalanced dataset, we randomly selected 
101 defect samples from the original dataset and combined 
them with the 499 normal samples, resulting in a new dataset 
with an imbalanced distribution totalling 600 samples. After 
initial classification on all the testing data to obtain pseudo-
labels, the relevant classification results are shown in Table 3 
and the ROC curve is shown in Figure 3.  

Table 3. Results of pseudo labelling on the imbalanced dataset 

Accuracy Precision Recall F1 ROC-AUC 

0.982 0.917 0.980 0.947 0.997 



In the initial classification task to obtain pseudo-labels, from the 
confusion matrix, there are only 2 samples from the minority 
class and 9 samples from the majority class, which are the defect 
and normal class respectively, that are incorrectly labelled 
yielding 11 mistakes out of the total of 600 

4.2. human correction and re-sampling  
As further investigation, we conducted active sample selection 

based on the uncertainty sampling method and queried for 50 
samples that are calculated as the most informative for human 
correction. The uncertainty sampling and human supervision 
results in 2 samples from the true defect class and 2 from the 
true normal class to be corrected. Thus, after human correction, 
all the defect samples are correctly labelled in this particular 
labelling process. 

Figure 3. The ROC curves of the pseudo labelling using initial model 

To address the class imbalance issue within the selected 50 
samples, we conducted an examination of the class distribution 
of the samples which revealed that 10 samples belong to the 
minority class (defect), while the remaining 40 samples were 
from the majority class (normal). To achieve a balance between 
the two classes, we applied oversampling by augmenting the 10 
minority class samples while retaining only the first 20 most 
informative samples from the majority class using an uncertainty 
sampling strategy. The 40 balanced samples were then added to 
the training data for further updating the model. To check the 
change in performance, the classification results on the 
validation dataset using the updated model are shown in Table 
4. 

Table 4. Results of the updated model on the validation dataset 
compared to the initial model 

Classifier Accuracy Precision Recall F1 ROC-
AUC 

Initial 0.978 0.984 0.972 0.978 0.993 

Updated 0.989 0.992 0.986 0.989 0.995 

While our model enhances classification accuracy, it is worth 
noting that the absolute improvements obtained may appear 
relatively small due to the fact that the initial accuracies of the 
baseline are already quite high. Nevertheless, our primary 
objective was to demonstrate how HITL features can further 
enhance the performance of the classification model, even 
when starting from a high baseline level. 
   Using this updated classification model, we performed auto 
labelling again on the remaining imbalanced testing dataset, the 
labelling performance is shown in Table 5. Since there is no 
mislabelling in the minority class, the value of recall is 1 which 
means for this particular dataset, all the defect samples have 
been correctly classified. As this is a computer vision-based ML 
application for classification on images datasets, the results are 
based on ML models for classification using features extracted 
from the AM process, such as power bed defects in SLS. The 
condition of the powder significantly influences the 
performance of SLS sintered parts, making machine learning 
applications for monitoring powder bed conditions highly 

promising for defect detection, manufacturing efficiency, and 
non-destructive quality assurance. 

Table 5. Evaluation of pseudo labelling on the imbalanced dataset using 
updated model 

Accuracy Precision Recall F1 ROC-AUC

0.989 0.929 1.00 0.963 0.999

5. Conclusion 

This paper presents an approach that performs computer 
vision-based classification and labelling on image data from the 
additive manufacturing process. We use a CNN-based classifier 
in combination with transfer learning, active learning strategies 
and semi-supervised learning to overcome the small data 
challenge. We achieved accurate classification in different 
pattens and labelling work on an SLS image dataset. In future 
work we plan to further investigate the sampling strategies for 
active learning and to refine the labelling method. 
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