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Abstract 

Float-Zone (FZ) crystal growth process is a critical process for producing ultra-pure silicon crystal with extremely low impurities, 
particularly low oxygen level. However, the occasional oxide problem on polysilicon surface acts as a impediment to the process 
efficiency. Hence, this study aims to address this problem by conducting root cause analysis. Specifically, association rule mining is 
applied on a dataset with the input identified by a fishbone diagram from different aspects. The results showed that a high moisture 
level from the early phase could potentially be a critical contributor to the oxide problem, thereby indicating the next step of research 
– exploring the underlying reasons for the high moisture level. 
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1. Introduction

It is undisputed that silicon wafers have become crucial to our 
modern life and the world’s commercial and military 
applications. The demand for silicon wafers has witnessed a 
substantial surge in recent years, necessitating a substantial 
increase in productivity. In order to meet these growing 
demands and enhance the competitiveness of businesses, single 
crystal growth process as the key process for the fabrication of 
silicon wafers, has been driven to increase good-for-order 
single-crystal silicon yield while keeping costs low. Float-Zone 
(FZ) crystal growth process is a critical process in the production 
of high-quality single crystals used in various applications, 
including solar cells, insulated gate bipolar transistors (IGBTs) 
[1], etc, where there purity of the silicon crystal is essential. The 
FZ process can allow for producing a higher purity silicon crystal 
with much lower concentrations of impurities, particularly lower 

content of oxygen (below 5 × 10�� atom/���  [2]) due to the 
absence of crucible. However, the high production costs of FZ 
crystals have been a hindrance for its wider applications,  due to 
the high costs for the feedstock material, polysilicon feed rod [3]. 
The contribution of the feed rod to the Cost of Ownership (CoO) 
of the growth process is far more than 50% [3]. Therefore, 
crystal yield is of great significance for the FZ process. However, 
the FZ process occasionally suffers from the oxygen 
contamination, which may disrupting the process efficiency, 
thus affecting crystal yield. The oxygen contamination can be 
visually observed in the images captured by the FZ vision system, 
as seen in Figure 1. To enhance the crystal yield and thus 
enhance the competiveness of the FZ process, it is essential to 
optimize the FZ process and achieve consistent quality by 
mitigating the oxide problem. Therefore, it is desired to discover 
the root causes of the oxide problem, which motivates this 
study. 
Root cause analysis is a process through which we can 
understand the fundamental triggers of a problem, thus leading 
to more effective solutions. Knowledge-driven approaches are 
widely used in conventional root cause analysis involving 

domain-specific expertise, and human intuition to identify the 
underlying causes of issues. Typical examples are fishbone 
diagram, 5 Why, and FMEA. However, these knowledge-driven 
approaches are time consuming and inefficient, which becomes 
particularly evident in the era of big data [5]. The rise in data 
accessibility, coupled with the increased availability of 
computational resources, has prompted researchers and 
practitioners to utilize data-driven approaches such as data 
mining and machine learning techniques to enhance the 
efficiency of the root cause analysis process [5]. 
Hence, this paper aims to improve the FZ process, by conducting 
root cause analysis for the oxide problem in the FZ process. To 
this end, association rule mining [6], a data-driven approach 
would be leveraged for the root cause analysis. 

Figure 1. The comparison of normal process and abnormal process with 
oxygen contamination. 

2. Root cause analysis with association rule mining

Association Rule Mining (ARM) [6] is a data-driven approach that 
can provide quantitative evidence of relationships between 
variables, allowing for discovering hidden relationships within 
the data that might have been overlooked. The frequent 
patterns extracted by ARM are in the form of X → Y  The 
frequent patterns are then examined by a minimum threshold 
of statistical measures, such as support and confidence and lift. 
The larger these measures, the more robust the rule is. One only 
needs to look into the strong rules extracted from ARM, and 
examine if they are related to the source of the problem using 
expert knowledge.  



However, it should be noted that ARM can only handle binary or 
categorical attributes, which is not common in manufacturing 
data. Therefore, if ARM is applied, the manufacturing data 
should be processed and converted into binary or categorical 
data. Besides, since the number of rules is highly dependent on 
support (frequency), some interesting rules might have been 
filtered due to the rarity. Hence, to assign equal importance to 
each variety of the oxide, ARM would be applied on each 
subdataset categorized by the varieties of the oxide. 

3. Experiments

Before applying ARM, the relevant data associated with the 
oxide problem was first identified by a fishbone diagram from 5 
aspects: Machine, Process, Ambition, Human, Material, as seen 
in Figure 2. Several potential factors were identified that may 
contribute to oxide (see Figure 2).    

Figure 2. Fishbone diagram for identify potential factors that contribute 
to the oxide problem. 

Subsequently, a total of 387 observations of these potential 
factors along with FZ images were collected from 387 production 
runs. These observations were cleaned and transformed to 
categorical data types. After data-preprocessing, the dataset 
consists of 387 samples and 135 features along with three oxide 
types: normal, spot and shadow. Next, FP-Growth from rCBA 
package in R was applied with a minimum class-wise support 
threshold of 30% and a maximum length of the itemsets of 3 
which is equivalent to considering at most two features. The 
generated rules were pruned with the absolute confidence 
threshold of 50% and the absolute lift threshold of 1.2, followed 
by removing redundant rules that have no positive improvement 
on confidence and lift measures. Finally, a total of 68 rules were 
identified, with lift values ranging from 1.2 to 11.88. 
The scatter plot for visualizing all rules can be see in Figure 3. As 
seen, the rules with the highest lift values are concentrated in 
the bottom left corner of the plot, indicating low support and 
confidence. In fact, the majority of these rules are linked to the 
normal type. While these rules may not be very actionable in 
practice, they offer valuable insights into the optimal conditions 
for a normal process. Another cluster stands in the upper-right 
corner of the plot with both a high level of support and 
confidence, making them particularly interesting. These rules 
are associated with spot and shadow oxide types. The network 
graph for the classes of normal, spot and shadow can be seen in 
Figure 4, 5, and 6, respectively. The highlighted itemsets of each 
graph are the most commonly occurring itemsets, indicating 
their great significance. As seen, the spot and shadow are 
associated with the moisture level from the early while the 
normal case is associated with high preparation time and low 
oxygen level. As mentioned in the scatter plot, the priority would 
be put on the rules of spot and shadow types rather than the the 
normal. Hence, the subsequent research would be to discover 
the root cause of high moisture level. 

4. Conclusions

In order to identify the fundamental triggers of the oxide 
problem to improve the FZ process, association rule mining  was 
leveraged for root cause analysis. The results showed that high 

moisture level from the early phase could potentially contribute 
to the spot and shadow types. Therefore, the next step of 
research would be focus on the root cause analysis of high 
moisture level. 

Figure 3. The scatter plot of rules. 

Figure 4. The network graph for normal case. 

Figure 5. The network graph for spot case. 

Figure 6. The network graph for shadow case. 
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