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Abstract 

This paper explores the application of micro manufacturing in the production of plastic parts, focusing on the widely used injection 
molding process. The increasing demand for high-quality parts in industrial settings has led to a heightened need for digital twins in 
micro injection molding. To address this demand, a Data-Driven approach is employed, involving the simulation of process 
parameters effects in plastic injection molding. The project employs the Design of Experiment (DOE) methodology for a specific 
geometry, varying three key input process parameters—Melt Temperature, Mold Temperature, and Injection Speed—across 
different material grades. Responses such as Part Weight, Cavity Injection Time, and Maximum Injection Pressure are simulated using 
a commercially available Finite Element Analysis (FEA) Simulation software. Data Driven Modelling is achieved by incorporating 
viscosity and pvT coefficients of each material, along with the specified process parameters. Statistical Analysis, Machine Learning, 
and Deep Learning methods are employed for the data driven modeling. The results indicate that Part Weight and Maximum Injection 
Pressure are influenced by all three input parameters, while Cavity Injection Time is primarily affected by the Injection Speed of the 
machine. Both Statistical and artificial intelligence models demonstrate effective performance with the selected materials. 
Importantly, these models successfully predict results for materials not initially considered, affirming the achievement of Data Driven 
Modelling for the specific geometry under investigation. 
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1. Introduction

In the modern engineering world, the widespread adoption of 
algorithms has lead to a transformative era by eliminating 
additional costs associated with time-consuming and expensive 
tests in the product design and production development cycle. 
Contemporary modeling, prediction, and optimization methods 
have markedly diminished the reliance on traditional 
experimental trials and measurements for enhancing both 
product and process. This spectrum of techniques including 
statistical methods (such as ANOVA), machine learning methods 
(including artificial neural networks – ANNs), and optimization 
methods utilizing meta-heuristic algorithms.

In the present context, the integration of Finite Element 
Analysis (FEA) methods with modern optimization approaches 
has proven to be effective for manufacturers in identifying 
optimal levels of input parameters, leading to the production of 
products of the highest quality. Given the intricate behavior of 
polymers, especially during injection molding processes, the 
multitude of parameters influencing product quality 
underscores the importance of monitoring and controlling each 
parameter and their interactions. This becomes imperative in 
the prevention of injection defects. 

Many studies have been conducted till now focusing on the 
application of data analysis in plastic injection molding process. 
They have used experimental tests and statistical analysis to 
rank the significance of some process parameters on the quality 

measures of the product [1,2]. In some other studies, 
researchers used ML-based techniques on experimental data to 
create a prediction model for an injection process [3,4,5]. Silva 
et al. [6] introduced an intelligent method to classify the quality 
of products. For this purpose, they employed artificial neural 
networks (ANNs) and support vector machines (SVMs) and a 
combination of the two methods. The trained models showed a 
good capability to predict the defects and classify them by type. 

Deep Neural Networks (DNNs) are preferred over traditional 
Artificial Neural Networks (ANNs) due to their increased depth, 
signifying the presence of multiple hidden layers. This depth 
allows DNNs to automatically learn hierarchical representations 
of features, making them highly effective in handling complex 
tasks such as image processing [7] and other intricate problem 
domains. The added depth enables DNNs to capture and 
understand intricate patterns in injection molding data, leading 
to superior performance compared to shallower networks with 
fewer layers. 

2. Materials and methods

The part under study has a dogbone-shaped geometry with 
the dimensions of 12×3×1 mm. the total volume of the part is 
76.4 mm3, and the surface of the part is 241.2 mm2. The mould 
has 2 cavities (see Figure 1). For this study, 36 different grades 
of different classes of thermoplastic polymers (both amorphous 
and semi-crystalline) have been chosen. The list includes ABS 
(Terluran EGP-7, Novodur E211, ALCOM AWL 10WT 1308-05 LB, 



Terluran 2802 TR, Terluran GP 22, Sinkral F332), COPE (Tritan 
MX731, Eastar DN011), HDPE (Dowlex IP60), PA6 (Ultrmid B3K), 
PA12 (Grilamid L20L), PC (Iupilon S-2000), PES (Ultrason 
E2010G6), PET (Petro 140), PMMA (95UX-BK 13, Altuglas drm), 
POM (Ultraform N2640 E2, Ultraform N2320 003, Ultraform 
S2320 003), PP (80CM-NC 601, ALCOM PP 6201 WT 0134-05LB, 
Exxon Mobil PP1013H1), PS (Polystyrol 456M), SAN (Kostil 
B266), PLA (Natureworks 7000D), PEEK (RTP 2205HF), PBT 
(Ultradur B4500), PVC (Polyvin 6620), LDPE (Lacqtene 1003 FL 
22), PPO (Noryl 731), PPSU (Ultrason P 3010), PEI (Ultem 1000), 
PSU (Ultrason S 2010), PPS (Fortron 1131L4), LCP (Vectra A430), 
and PAI (Torlon 5030). In the beginning, the CAD geometry of 
the part was created. Then the model was transferred to the FEA 
software, Moldex 3D.  

Figure 1. Micro part geometry and dimensions including miniaturized 
sprue, runners, and gates. 

  A 3D mesh with the seeding size of 0.2 mm was employed 
which created 12061 elements on the part. Then, for some 
materials, a 2-level (with the levels of -1 and +1) and for some 
others, a 3-level full factorial DOE (with the levels of -1, 0, +1) 
was employed for the 3 input factors. So, in total, 8 and 27 
experiments were designed respectively. The amounts for each 
input variable (melt temperature, mold temperature, and 
injection speed) were normalized so that process parameters 
variations could be computed evenly across all DOEs for all the 
materials grades. After setting all the experiments in the FEA 
software, the results (part weight, cavity injection time, 
maximum injection pressure) were simulated and collected. 
Studying and optimizing various parameters in the injection 
molding process is possible but time-consuming and expensive. 
To reduce defects, focusing on key parameters such as melt 
temperature, mold temperature, and injection speed is crucial. 
The objectives of this study considered to be the part weight, 
maximum injection pressure, and cavity injection time. 
Correlating controllable input parameters (melt temperature, 
mold temperature, injection speed) with output parameters 
(part weight, cavity injection time, maximum injection pressure) 
helps in implementing Data Driven Modelling in injection 
molding. 
Every thermoplastic has specific coefficients which represent 
the materials properties in their respective material models. 
These coefficients remain constant for every selected material 
grade, resulting in 36 recorded levels for the corresponding 36 
material grades. In this study, viscosity and pvT model 
coefficients of the materials are extracted from the Moldex3D 
material database. The list of coefficients can be seen in Table 1. 
After performing the simulations based on the DOE plan, all the 
simulated results were collected. Then, Analysis of Variance was 
applied on the results to provide main effect diagrams of the 
variables on the results. Finally, a Deep Learning (DL) algorithm 
was trained based on the input data to allow predictions of the 
process results. 

Table 1 List of coefficients. 

Viscosity coefficients pvT coefficients
Cross 
model 2

Cross model 
3

n n b1L [cc/g] b1S [cc/g]
τ∗
[dyne/cm3]

τ∗ [dyne/cm3] b2L [cc/g.K] b2S [cc/g.K]

B 
[g/cm.sec]

D1 [g/cm.sec] b3L
[dyne/cm2]

b3S
[dyne/cm2]

Tb [K] D2 [K] b4L[1/K] b4S [1/K]
D 
[cm2/dyne]

D3[cm2/dyne] b5 [K] b6 [cm’2.K/dyne]

A1 b7 [cc/g] b8 [1/K]

A2b[K] b9 [cmˆ2/dyne]

In this study, two DNNs for the considered material types are 
provided. Figure 2 illustrates the schematic view of the proposed 
networks. The DNNs contain 6 hidden layers, which are fully 
connected to the previous and next layers without any dropout 
layers. For cross model (2) and cross model (3), 4 and 7 
parameters are considered as viscosity parameters respectively 
and 13 parameters as PVT parameters. Three parameters are 
considered as uncontrollable parameters. In Table 2, the optimal 
parameters of the proposed DNN’s can be observed. 

Figure 2. The DNNs architecture considered for the study.

Table 2 DNNs characteristics for Cross model 2 and 3 materials

Cross model 2 Cross model 3 

Number of 
hidden layers 

6 6 

Number of 
neurons in 
each layer 

[32,64,128,256,128,
32] 

[32,64,128,256,128,
32] 

Loss function Mean Square Error 
(MSE) loss 

Mean Square Error 
(MSE) loss 

Optimizer AdamW AdamW 

Activation 
function of 
each layer 

[GELU, GELU, GELU, 
GELU, GELU, 
LeakyReLU] 

[ReLU6, ReLU6, 
ReLU6, ReLU6, 

ReLU6, LeakyReLU] 

Starting 
learning rate 

0.0005 0.0003 

Training and 
validation 
instances 

232 332 



3. Results

The results of simulations were analyzed using the ANOVA 
method. The main effect plots for all the outputs and interaction 
plots for the part weight can be observed in Figure 3. 

Figure 3. Main effect and interaction plots. 

The interaction profiles have also been obtained for the other 
two output objectives, namely Cavity Injection Time and 
Maximum Injection Pressure. The main effect summary and the 
interaction effect summary of the part weight can be seen in the 
Figure 4. The same responses can also be provided for Cavity 
injection time and Maximum injection pressure. 

Figure 4. Part weignt main effect and interaction summary 

As a result of ANOVA, prediction regression models can be 
obtained. The general form of these models are as follows: 

M[g] = μ+β1 ∗(A)+β2 ∗(B)+β3 ∗(C)+β4 ∗(A∗B)+β5 ∗(A∗C)+β6 
∗(B∗C) (4.1) 

T[s] = μ+β1 ∗(A)+β2 ∗(B)+β3 ∗(C)+β4 ∗(A∗B)+β5 ∗(A∗C)+β6 
∗(B∗C) (4.2) 

P[MPa] = 
μ+β1∗(A)+β2∗(B)+β3∗(C)+β4∗(A∗B)+β5∗(A∗C)+β6∗(B∗C) (4.3) 

The terms of M, T, and P are representing Part weight, Cavity 
injection time, and Maximum injection pressure, respectively. 

The factors are interpreted as: 

 A - Melt Temperature 

 B - Mold Temperature 

 C - Injection Speed 

 AB - Melt and Mold Temperature Interaction 

 AC - Melt Temperature and Injection speed Interaction 

 BC - Mold Temperature and Injection speed Interaction 
β1, β2, β3, β4, β5, β6 are the coefficients of the above-

mentioned factors. In the equations above, μ is the mean of 
responses. For each material grade, all the coefficients were 
extracted. Since 36 materials were chosen to be investigated, 
108 equations to predict the 3 outputs for each material have 
been extracted. The prediction results of each model are shown 
in Figure 7.

3.1 DNN model 

In Figure 6., the training and validation outcomes of the 
suggested DNNs for Cross Model (2) and Cross Model (3) are 
depicted. The red-highlighted area signifies the occurrence of 
overtraining, prompting the cessation of the training process 
and the preservation and utilization of optimal coefficients at 
that point. 

Table 3 provides an assessment of the performance of the 
trained DNNs concerning the loss functions or MSE, and RMSE. 
Notably, the MSE and RMSE values for Cross Model (2) exhibit a 
lower magnitude compared to Cross Model (3) across both 
training and validation datasets. However, it is noteworthy that 
both sets of values, specifically less than 0.0055 for MSE and 
0.075 for RMSE, fall within a range deemed acceptable in the 
context of the given analysis. 

Figure 5. Training and validation loss plots of the modeling 
performance of a) Cross Model (2) and b) Cross Model (3), including 

optimal validation epochs and overtraining ranges. 

Table 3. Training and validation MSE/RMSE for Cross Model (2) and 
Cross Model (3)

Model Training Validation

��� ���� ��� ����

Cross model (2) 0.00024 0.01547 0.00060 0.02441

Cross model (3) 0.00518 0.07199 0.00538 0.07334

Following the completion of training and validation phases, 
the testing process is essential. The recommended method 
involves plotting the fit line between model output (predicted 
values) and target values (ground truth data). Figure 6 illustrates 
the fit line alongside the line y=x, depicting optimal results with 
an R² value of 1. Notably, the fitted lines for all process 



responses exhibit R² values exceeding 0.96, with slope values 
within the range of 0.965 and 1.093, and intercepts below 0.186. 
These results affirm the efficacy of the training and validation 
processes, showcasing the model's accuracy in predicting 
outcomes. 

Figure 6. Testing fit lines of DNN models for 1) normalized part weight, 
2) normalized cavity injection time, and 3) normalized maximum 

injection pressure, alongside their comparison with the identity line y=x 

In the final analysis, Figure 7 offers a comprehensive 
comparison between the ground truth values and the predicted 
values generated by DNNs for Cross Model (2) and Cross Model 
(3) and predictions made by RSM. Notably, with only minor 
discrepancies observed in a few instances, where testing data 
exhibits trivial differences from the ground truth, the networks 
consistently demonstrate accurate predictions of the trends and 
values associated with the proposed response parameters. 

Figure 7. Comparative analysis of ground truth and predicted values 
by trained DNNs for a) Cross Model (2) and b) Cross Model (3), utilizing 

testing data alongside predictions made by RSM. 

4. Conclusion      

This study focused on the investigation of the effect of melt 
temperature, mold temperature, and injection speed on 3 part 
quality factors (part weight, maximum injection pressure, 
injection time). 36 different thermoplastic materials were 
studied. After performing full factorial DOEs with all materials, 
two types of models were assembled (based on the materials’ 
specifications). Then, FEA was conducted, and the results were 
measured. Then a prediction model for each of the outputs of 
the process for all the 36 materials were extracted (108 in total). 
To investigate if we can reach higher accuracy prediction models 
rather than RSM models, a DNN was optimized and trained for 
each model. At the end, the results of RSM models’ predictions 
were compared to those of the DNN models. 

It was observed that the DNN model can predict the results 
with much higher accuracy compared to RSM model. The 
prediction accuracy of DNN for part weight, cavity injection time, 
and maximum injection pressure is 98.9%, 99.1%, and 96.1% for 
cross model 2 and 97.8%, 96.4%, and 98.0% for cross model 3. 
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