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Abstract 
 

The paper looks at the problem of estimating the uncertainty of the five-axis 

machine tool indirect calibration method, using (generalized) GUM Uncertainty 

Framework (GUF) presented in Guide to the Expression of Uncertainty in 

Measurement Supplement 2 (GUM S2). The analysed Scale Enriched Master 

Balls Artefact (SAMBA) probing calibration method is solved through an 

iterative calculation (for each iteration the calculation model changes and 

depends on the previous one), which causes difficulties when the measurement 

model sensitivity matrix has to be defined analytically. That is why a numerical 

Jacobian is used. The simulated results of the machine geometric errors 

uncertainties estimation are presented for different number and configuration of 

master balls used in the SAMBA artefact. 

 

1 Introduction 
 

Calibration of multi-axis machine tools requires estimating their geometric 

errors parameters. This can be achieved through direct or indirect methods [1]. 

The former involve measuring each parameter separately using, for example, 

laser interferometry. The latter allow estimating a number of those parameters 

from the measurement of volumetric effects within the machine workspace. The 

devices used for indirect calibration are, among others, ‘chase-the-ball’ [2], 

SAMBA [3], self-tracking laser interferometers etc. 

Calibration results can be evaluated through different means. 

Bringmann et al. [4] compare different calibration strategies through the 

uncertainty on the workpiece feature errors estimated from the calibration results 



 

 
Laser Metrology and Machine Performance XI 

 

using the Monte Carlo method (MCM). In [2] the calibration results are 

evaluated through their uncertainty obtained from the MCM simulation of the 

full machine model. Schwenke et al. [5] estimate the machine parametric errors 

from the interferometric displacement measurements. In order to calculate the 

calibration results uncertainty, the MCM simulations are performed with the 

randomly distributed noise added to the measurement results. The standard 

deviations of the parameters represent their standard uncertainties and are used 

for optimizing the measurement strategy. 

Because the indirect calibration methods have a multi-output model, their 

uncertainty evaluation should be estimated following the GUM S2 [6] rather 

than the GUM [7]. In this study, the (generalized) GUM uncertainty framework 

is applied for the uncertainty calculation of the SAMBA method, which has a 

multi-output model and an iterative solution. 

 

2 SAMBA 
 

The SAMBA calibration method [3] requires probing the artefact consisting of a 

number of master balls and a scale bar in different machine rotary axis 

indexations. In Figure 1 (left) the artefact with 4 master balls (with a diameter of 

12.7 mm) and the scale bar (with a length of 304.6686 mm) mounted on the 

table of the Mitsui Seiki five-axis machine tool is shown. The kinematic model 

of the machine is depicted in Figure 1 (right). During the SAMBA 

measurements, the balls are probed in five points which allows calculating their 

centre position coordinates. 

 

 
Figure 1: left: SAMBA artefact probed on the machine tool for [b, c]=[0, 0]; 

right: five-axis machine tool kinematic model with the topology 

WCBXFZYC1T; W - workpiece, T - tool, F - machine foundation, B, C – rotary 

axes around the Y and Z axes respectively, X, Y, Z – machine linear axes, C1 – 

spindle. 

 

Figure 2 shows the SAMBA method algorithm for identifying the m output 

quantities Y with the estimate y=(y1,...,ym) from the N input quantities X with the 
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estimate x=(x1, y1, z1,.., x(N-1)/3, y(N-1)/3, z(N-1)/3,, L), where x, y, z are the measured 

balls centers coordinates and L is the calibrated scale bar length. 

In order to identify the geometric errors parameters the machine kinematic 

model needs to be built [8]. That allows predicting the tool position (virtual tool 

position at the ball centre) and comparing it with the measured ball centre 

position by using the homogenous transformation matrix (HTM) 
ball

Ttip, which 

results in calculating the residual volumetric error XR. In order to reduce this 

error, the Newton-Gauss approach is applied. The machine sensitivity Jacobian 

matrix J is used for calculating the adjustment in machine parameters y from 

the equation: 

 𝑿𝑅 + 𝐽 ∙  𝛿𝒚 = 0 (1) 

The calculations are continued until yi is smaller than the set threshold 

value . 

 
Figure 2: SAMBA flow chart 

 

3 Uncertainty estimation 
 

Since the analysed calibration model is a multi-output model, the uncertainty is 

estimated according to GUM S2 [6]. The uncertainty is calculated for all the 

parameters simultaneously. The correlation between the parameters is also 
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calculated. In order to obtain the uncertainty at the required confidence level p 

the coverage factor is estimated. 

 

3.1 GUM Uncertainty Framework (GUF) 

 

The GUF method presented in GUM S2 [6] allows estimating the output 

quantities covariance matrix Uy from the equation: 

 𝑼𝑦 = 𝑪𝑥𝑼𝑥𝑪𝑥
T (2) 

where: 

𝑪𝑥 is the sensitivity measurement matrix, 

 𝑪𝑥 =

[
 
 
 
 
 

𝜕𝑓1

𝜕𝑥1

𝜕𝑓1

𝜕𝑥2

𝜕𝑓2

𝜕𝑥1

𝜕𝑓2

𝜕𝑥2

⋯

𝜕𝑓1

𝜕𝑥𝑁

𝜕𝑓2

𝜕𝑥𝑁

⋮ ⋱ ⋮
𝜕𝑓𝑚
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𝜕𝑓𝑚

𝜕𝑥2
⋯

𝜕𝑓𝑚

𝜕𝑥𝑁]
 
 
 
 
 

. (3) 

𝑼𝑥 is the input data covariance (uncertainty) matrix, 

 𝑼𝑥 = [
𝑢(𝑥1, 𝑥1) … 𝑢(𝑥1, 𝑥𝑁)

⋮ ⋱ ⋮
𝑢(𝑥𝑁 , 𝑥1) … 𝑢(𝑥𝑁 , 𝑥𝑁)

] (4) 

where each element (i,j)  is 

 𝑢(𝑥𝑖 , 𝑥𝑗) = 𝑟(𝑥𝑖 , 𝑥𝑗)𝑢(𝑥𝑖)𝑢(𝑥𝑗) (5) 

with r(xi, xj) the correlation coefficient associated with xi and xj. 

 

3.2 Numerical Jacobian 

 

Due to the iterative character of the identification procedure the function y=f(x) 

cannot be expressed analytically. Nevertheless, its sensitive matrix can be 

estimated as the Nxm numerical Jacobian: 

 𝑪𝑥 ≈ 𝑱𝑛𝑢𝑚 (6) 

Each element (n, k) in Jnum equals: 

 𝑱𝑛𝑢𝑚(𝑛,𝑘) =
𝜕𝑓𝑘

𝜕𝑥𝑛
=

𝑓𝑘(𝑥1,…,𝑥𝑛+∆𝑥𝑛,…,𝑥𝑁 )−𝑓𝑘(𝑥1,…,𝑥𝑁 )

∆𝑥𝑛
 (7) 
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Adding the xn to each of the N input quantities consecutively allows 

building the numerical Jacobian column by column. 

 

4 Measurements and simulation 
 

The uncertainty calculation is performed using MATLAB
®
. The simulation is 

ran in order to calculate the numerical Jacobian and calculate the uncertainty. 

However, the input data covariance Ux is estimated from 44 repeated SAMBA 

measurements performed over a 24 hour period. It assures that the correlation 

between the input data is considered. It also includes any changes in the 

measurands over that period. 

The SAMBA calibration method is performed for the thirteen geometric 

error parameters listed in  

 

Table 1 with the values obtained during the previous calibration [3]. The 

measurement is simulated for the seven different rotary axis indexation pairs: [b, 

c] = [90, 270], [60, 180], [30, 90], [0, 0], [-90, -270], [-60, -180] and [-30, -90] 

deg. The obtained values allow identifying the calibration results using different 

number and configuration of master balls. The uncertainty for one master ball 

used in the artifact is estimated for each of the four balls. When two balls are 

used it is obtained for all of the six combinations of the balls: 1 and 2; 

1and 3; … ; 3 and 4. The same for the four configurations of the three balls: 1, 

2 and 3; 1,2 and 4; 1, 3 and 4; 2,3 and 4. 

 

Table 1: Identified machine geometric errors parameters [3]. 

Symbol Description 
Calibration 

result 

EAOB out-of-squareness of the B-axis relative to the Z-axis (rad) 0.9 

ECOB out-of-squareness of the B-axis relative to the X-axis (rad) -1.5 

EXOC distance between the B and C axes (m) -102.2 

EAOC out-of-squareness of the C-axis relative to the B-axis (rad) 3.9 

EBOC out-of-squareness of the C-axis relative to the X-axis (rad) 19.9 

EBOZ out-of-squareness of the Z-axis relative to the X-axis (rad) -37.5 

EAOY out-of-squareness of the Y-axis relative to the Z-axis (rad) -8.8 

ECOY out-of-squareness of the Y-axis relative to the X-axis (rad) 23.9 

EXOC1 X offset of the spindle relative to the B-axis (m) -97.1 

EYOC1 Y offset to the spindle relative to the C-axis (m) 15.7 

EXX positioning linear error term of the X-axis (m/m) -45.2 

EYY positioning linear error term of the Y-axis (m/m) 5.3 

EZZ positioning linear error term of the Z-axis (m/m) -20.5 

 

 

 

5 Results 
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The maximum and minimum parameter uncertainty values obtained for different 

number and combinations of master balls are depicted in Figure 3. The 

configuration ball numbers corresponding to the uncertainties are not shown due 

to the graph clarity but will be introduced in the discussion. All the uncertainties 

are calculated for the rectangular coverage regions for the coverage probability 

p=0.95, so, depending on the master balls used, the coverage factor varies from 

2.9 to 3.0. 

 
Figure 3: Uncertainty values for different numbers and configurations of 

SAMBA artefact for the confidence level p=0.95. 

 

No clear trend in the influence of the number or combination of master balls 

on the uncertainty value can be observed for the EXX. This parameter is estimated 

only from the length of the scale bar L and the measurement of the scale bar 

balls, so that it cannot be influenced by measurement of the master balls 1, 2, 3, 

4. Almost negligible difference for the uncertainty is also observed for the EXOC. 

The biggest impact of the number and configuration of the master balls can 

be observed for the scale errors EYY and EZZ. In both cases, a larger number of 

the master balls reduces the uncertainty range and, when one ball is used, the 
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smallest uncertainty value is obtained for the balls 3 and 4 and the largest for the 

ball number 1. For the EZZ the U0.95min and U0.95max values are increasing when 

more balls are added and the U0.95max(EZZ) for 1 and 2 balls is close to the 

U0.95min(EZZ) for 3 balls.  

The range and the mean values of U0.95 are decreasing significantly for the 

EAOC, EBOZ, ECOY, EYOC1 when more master balls, larger nb, are used in the 

artefact. On the contrary U(EAOB) increases with the larger nb. However, this 

gain is not as significant as the decrease of the uncertainty of other parameters 

for higher values of nb. 

 

6 Conclusion 
 

A method for the uncertainty estimation of the multi-output calibration method 

has been proposed. The calculation of numerical Jacobian allowed estimating 

the model sensitivity matrix without defining the analytical equation of the 

model. This method has a relatively short computation time, compared to the 

Monte Carlo method, and allows giving the uncertainty result within few 

minutes although the number of the input and output variables is large. 

The uncertainty estimation performed for different SAMBA configurations 

allowed comparing them and verifying if it is always necessary to use more 

balls, since measurement takes valuable machining time. The results showed 

that the uncertainty depends on the number and combination of the balls used. 

Since there is no best set or a ball that would give the lowest uncertainty for all 

the parameters, the number of balls should be chosen as the smallest number of 

the master balls used that gives the results with the uncertainty not lower than 

the demanded one. With this method the results within the desired uncertainty 

can be obtained for the shortest possible calibration time.  

The artefact with two master balls requires half of the measuring time 

comparing to the one with four balls. Moreover, the uncertainty for two balls 

(for most of the parameters) is not significantly lower than for the four balls. 

Taking those factors into consideration, calibration using SAMBA with two 

master balls gives satisfactory results. 
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