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Abstract 

Accurate and flexible feedforward control is essential for the performance of mechatronic systems. 

This research aims at developing a systematic framework for neural networks for feedforward control 

that explicitely considers the three basic entities involved in constructing models from data [1]: model 

structures, data sets and assessment criteria.  

 

Consider a SISO control system with plant 𝑃, controller 𝐶 and error 𝑒 given by 

𝑒 = 𝑆𝑟 − 𝑆𝑃𝑓, 

with reference 𝑟, feedforward signal 𝑓 and system sensitivity 𝑆 = (1 + 𝑃𝐶)−1. The feedforward signal 

for which the error is zero is given by 

𝑓 = (𝑆𝑃)−1𝑆𝑟 = 𝑃−1𝑟. 

The feedforward signal is designed using a neural network ℱ that maps 𝑟 to 𝑓𝑛𝑛, such that the error is 

minimized.   

 

Regarding model structures, neural networks used for feedforward control of mechatronic systems 

should enable pre-actuation [2] and compensation of nonlinear effects. If the plant 𝑃 contains delays, 

including sampling delays, and in particular when the plant is non-minimum phase, the inverse 𝑃−1 

that is approximated by the neural network is non-causal. Pre-actuation in 𝑓𝑛𝑛  is achieved through 

non-causal time-delay neural networks that result in finite preview, and bi-directional long short-term 

memory layers in recurrent neural networks that result in infinite preview. In addition, nonlinear 

effects such as friction can be modeled through nonlinear activation functions, which are typical for 

neural networks. 
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The approximation of system nonlinearities depends on the specific input-output data set that is used, 

since nonlinearities manifest themselves along the used trajectories. Therefore, networks are trained 

using a representative closed-loop data set consisting of ten fourth-order references with 

corresponding feedforward signals 𝑓train that are found using iterative learning control [3].  

 

The criterion with which the networks are trained should be related to the criteria based on which the 

system performance is assessed [4]. This is achieved by the following control-relevant cost function 

𝒥(𝑓) = ||𝑆𝑃(𝑓train − 𝑓)||
2
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in which the first term minimizes the error in terms of the squared 2-norm and the second term is 

added for regularization.  

 

Experimental results on an industrial flatbed printer, see Figure 1, show that non-causal TDNNs reduce 

the cost by a factor three compared to polynomial basis functions. RNNs are shown to be sensitive to 

overfitting and as such result in relatively large errors for references outside of the training set, see 

Figure 2. 
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Figure 2: Errors for a reference outside the training 
set resulting from 𝑓train (blue), polynomial basis 
functions (purple), a non-causal TDNN (yellow) and a 
non-causal RNN (red) 

Figure 1: Arizona flatbed printer  


