

Thermal Contact Conductance in Vacuum Euspen SIG on Thermal Issues; March 22 & 23, 2022

Rob van Gils & Joris Oosterhuis, Ruud Olieslagers, Mo Mirsadeghi Philips Engineering Solutions 2022-03-23

innovation ++ you

Contents

- Introduction
 - Introduction to Philips Engineering Solutions and speaker
 - Motivation & Objective
- Methodology
 - Experimental setup
 - Modelling & Error budget
- Results
 - Accuracy quantification measurements
 - Main results & correlation with literature
- Conclusions
- Future work

Introduction

Philips Engineering Solutions

- Philips Engineering Solutions
 - Originated from Philips CFT, Apptech, Innovation Services, ...
 - "Creates the bridge from idea to market"
 - Innovation support to both Philips businesses as external partners
 - Head quartered in Eindhoven (High Tech Campus)
- Rob van Gils
 - 2002 2012: Master/PhD at TU/e, Dynamics and Control
 - Control of a Pool-boiling system
 - Connection between Dynamics, Control and Thermal field
 - 2012 2022: Sr. Technologist at Philips Engineering Solutions
 - Competence Leader Thermal & Flow
 - Bridge gap between thermal field and other mechatronics competences

PHILIPS

4

Motivation

- Thermal Contact Conductance (TCC): the thermal resistance between two solids that are pressed together
 - Literature: multiple application areas, see [Yovanovic2005]**
 - Spread in TCC is huge for only small deviations in test conditions
- Tools developed in literature
 - Are complex to use
 - Originate from different applications
- In this study: Test conditions similar to mechatronics applications
 - High precision systems \rightarrow in vacuum
 - Small contact areas \rightarrow dominant in heat transfer path
 - Relatively high contact pressures can be achieved
- * [Incropera2006]: Fundamentals of heat and mass transfer, Incropera & DeWitt, 2006, 6th edition
- ** **[Yovanovic2005]**: Four Decades of Research on Thermal Contact, Gap, and Joint Resistance in Microelectronics, *M. Yovanovic, IEEE Trans. on components and packaging tech., vol. 28, 2005*
- 5 Philips Engineering Solutions Thermal Contact Conductance in Vacuum Euspen SIG on Thermal Issues 2022, March 22-23

contact pressure (Mpa)

Objective

- Objective is to quantify the thermal contact conductance in vacuum
 - Meaning: a measure for the thermal coupling between surfaces in contact
 - No research on micro/macro-scopic contact in order to define general models
 - Test conditions as close to the conditions in High Precision Machines as possible
- Measure for thermal coupling
 - Expressed as a single heat transfer coefficient: h_{TCC} [W/m²K]
- Single parameter that quantifies the thermal coupling:

$$h_{TCC} = \frac{Q_{S1 \to S2}}{A_{con} \cdot (T_{s1} - T_{s2})}$$

- With
- $Q_{S1 \rightarrow S2}$: Heat flow from Surface 1 to Surface 2 in [W]
- $-\ A_{con}$ the contact area between the solids in $[m^2]$
- T_{S1}: The surface averaged temperature of Surface 1 in [°C]
- T_{s2}: The surface averaged temperature of Surface 2 in [°C]

PHILIPS

Methodology

Philips Engineering Solutions – Thermal Contact Conductance in Vacuum – Euspen SIG on Thermal Issues 2022, March 22-23

9

PHILIPS

Test settings

• Sample properties

- Materials investigated: Aluminum 5083 (Al5), Aluminum 6082 (Al6), AlSI316L (StSt), Titanium Grade 5 (Ti5)
- Contact surface roughnesses: Ra = 0.4 μ m (nominal), and Ra = 1.6, 3.2 and 6.4 μ m
- Contact sizes: 50mm² (contact pressure = 0.1 25MPa), 10mm² (contact pressure = 25 – 100MPa)
- Environmental conditions
 - Vacuum tests: air pressure: 1 5Pa air
 - Atmospheric tests: typical Dutch atmospheric pressure: 970 – 1050hPa air
 - Lab temperature: 20 24°C

Procedure to determine h_{TCC}

Contact conductance is calculated via

 $-h_{TCC} = \frac{Q_{S1 \to S2}}{A_{con} \cdot (T_{S1} - T_{S2})}$

- Determination of Q_{th}
 - Electrical input to heater is measured
 - Heat might leak to environment
 - Assumed heat flow through contact: $Q_{S1 \rightarrow S2} = \alpha \cdot Q_{th}$
- Determination of A_{con}
 - Test samples with $A_{con} = 50 \text{mm}^2$ and with $A_{con} = 10 \text{mm}^2$
 - Misalignment of samples leads to $A_{con} = \beta \cdot A_{con}$
 - Maximal misalignment of 200µm between samples
- Determination of T_{S1} and T_{S2}
 - Measurement of NTCs is not at the contact
 - Model-based adjustment of the measurements needed
 - $T_{S1} = T_{NTC,top} R_{top} \cdot \alpha \cdot Q_{th}$
 - $T_{S2} = T_{NTC,btm} + R_{btm} \cdot \alpha \cdot Q_{th}$

- The adjustment parameters α , β , R_{top} and R_{btm} are defined per sample pair
- The Contact Conductance can then be obtained via

$$h_{TCC} = \frac{\alpha \cdot Q_{th}}{\beta \cdot A_{con} \cdot \left(T_{NTC,top} - T_{NTC,btm} - \alpha \cdot Q_{th} (R_{top} + R_{btm})\right)}$$

PHILIPS

Thermal modelling Of part of the setup

- Thermal model set up in ANSYS Mechanical
 - Boundary conditions: heat sink, radiation, heat load
 - Contact between samples: h_{TCC}
 - Other contacts: $h_{con} \approx 1000 2000W/m^2K$ (subjected to full contact surface)
- Model used to determine the adjustment parameters α , β , R_{top} and R_{btm} per sample pair
- Model used to define error budget:
 - Statistical sum of contributions: +/-20%

-	Error contribution	
Error source	50mm ² contacts	
Heat load uncertainty due to voltage and current uncertainty	6.0%	
Heat flow uncertainty due to heat losses	10.0%	
Contact area uncertainty	3.2%	
NTC measurement error	2.5%	
Additional error due to temperature measurement adjustment		
Heat flow uncertainty	0.8%	
Misalignment	6.1%	
Uncertainty in thermal conductance	12.3%	
Uncertainty in emissivity samples	5.3%	
Uncertainty in emissivity heater top	5.4%	
Statistical sum:	20.2%	

Results

Accuracy quantification

- Accuracy test: measure h_{TCC} with glass plate between samples
- Effective HTC:
 - Conduction through glass: $h_{eff} = 1000W/m^2K$
 - Contact Conductance AI to glass: $h_{con} = 10000 W/m^2 K$
 - Total effective HTC: $h_{eff} = \frac{1}{t/\lambda + 2/10000} = 833$ W/m²K
- Measurement
 - Al samples: h_{TCC} measured: 847W/m²K
 - StSt samples: h_{TCC} measured: 765W/m²K
- Conclusion: Measured h_{TCC} in line with expected h_{TCC}

Results Nominal tests

- Nominal tests are employed with
 - Samples with a Ra of 0.4 μm
 - Contact pressure: 0.1 25MPa
- Observations
 - Some measurement points are not in line with the trend observed → this is assumed to be the nature of the TCC
 - TCC values for Al lie considerably higher than those for StSt and Ti
 - TCC for AI StSt not much higher than StSt StSt
- Correlations with literature
 - Good overlap with values from [Incropera2006]* 10²
 - Good overlap with earlier found values in different test setup
 - Poor correlation with Yovanovic** and FVV models***

***** [Incropera2006]: Fundamentals of heat and mass transfer, *Incropera & DeWitt, 2006, 6th ed.* ****** [Yovanovic2005]: Four Decades of Research on Thermal Contact, Gap, and Joint Resistance in Microelectronics, *M. Yovanovic, IEEE Trans. on components and packaging tech., vol. 28, 2005* ******* [FVV2011]: Modellentwicklung für den kontaktdruckabhängigen ärmeübergang, *72.Jahrgang pp142-147, 2011*

Results High contact pressure

- High contact pressure tests are employed with
 - Samples with a Ra of 0.4 μ m
 - $A_{con} = 10 \text{mm}^2$
 - Contact pressure: 50 100MPa
- Observations •
 - TCC values seem to plateau towards an asymptotic value
 - Large variance between test with large contact surface and small contact surface @ 25MPa
- Correlations with literature
 - Poor correlation with Yovanovic model**. but it is only valid up to 10MPa
 - Poor correlation with FVV models*** which are based on atmospheric tests and for >5 Recontacts

[Incropera2006]: Fundamentals of heat and mass transfer, Incropera & DeWitt, 2006, 6th ed. [Yovanovic2005]: Four Decades of Research on Thermal Contact, Gap, and Joint Resistance in Microelectronics, M. Yovanovic, IEEE Trans. on components and packaging tech., vol. 28, 2005 *** [FVV2011]: Modellentwicklung für den kontaktdruckabhängigen ärmeübergang, 72. Jahrgang pp142-147, 2011

Nominal tests Correlation with [Incropera2006]

- Nominal tests are employed with
 - Samples with a Ra of 0.4 μm
 - Contact pressure: 0.1 25MPa
- Correlations with literature
 - Good overlap with values from [Incropera2006]

Nominal tests Correlation with Yovanovic

- Nominal tests are employed with
 - Samples with a Ra of 0.4 μm
 - Contact pressure: 0.1 25MPa
- Correlations with literature
 - Poor correlation with Yovanovic and FVV models
 - Yovanovic model predicts significantly higher TCC values (up to one order of magnitude)
 - Models are used outside of their validity range
 - Surface roughness Ra < 3μm
 - Contact pressure > 10MPa
 - Aluminum samples

Nominal tests Correlation with FVV

- Nominal tests are employed with
 - Samples with a Ra of 0.4 μ m
 - Contact pressure: 0.1 25MPa
- Correlations with literature •
 - Poor correlation with Yovanovic and FVV models

h_{TCC} [W/m²K]

10⁴

 10^{3}

 EVV models based on atmospheric tests

Results Re-contact tests

- Re-contact tests are employed with
 - Samples with a Ra of 0.4 and 1.6 μm
 - Contact pressure: 10MPa
- Observations
 - The AI AI contacts drop significantly after the first contact → due to changing surface conditions?
 - No real trend due to re-contacts can be determined
- Correlations with literature
 - In literature re-contacts are known to have an effect on the TCC value between surfaces

Conclusions & Future Work

Conclusions

• Experimental Setup

- A test setup to measure the thermal contact conductance between metallic surfaces in vacuum is designed
- Measurement data is used together with model-based parameters to determine the h_{TCC}
- An accuracy test with a known thermal resistance and model-based error budgeting establishes an accuracy of 20 and 30% for the 50mm² and 10mm² contacts, respectively
- General observation on the TCC value
 - The TCC of metallic surfaces is rather unpredictable and non-reproducible
 - Fresh Al Al contacts provide highest TCC values
 - AI AI contact conductance can significantly reduce when an oxidation layer has formed on the surfaces → the resulting h_{TCC} is the same order of magnitude as those for StSt and Ti contacts
 - Comparison with TCC models from literature shows that very large mismatches can occur when models are used outside their validity range
- Advice for systems where performance is dominated by TCC behavior
 - Be aware of the large non-reproducibility that can occur upon recontact and/or changing surface conditions (e.g. oxidation)
 - Be aware of the validity ranges and quick deterioration outside these ranges of TCC models from literature
 - Do elaborate sensitivity studies on thermal models to investigate the impact of this
 - But if possible: Design such that performance is not impacted by changes in the TCC between surfaces

Future Work

- Currently we are continuing this study as part of an MSc-assignment
 - Reproducibility of test setup using glass plate
 - Experimentally qualifying heat losses in the setup
 - Surface topology investigation (using microscopes) to investigate changes in surface roughness/topology after re-contacts & their effect on the TCC value
- Research directions for future studies can be
 - Further investigate impact of orientation of surfaces on TCC
 - Investigate further combinations between materials and surface roughnesses
 - Investigate the use of fillers

Questions & Answers

References:

- * [Incropera2006]: Fundamentals of heat and mass transfer, Incropera & DeWitt, 2006, 6th ed.
- ** **[Yovanovic2005]**: Four Decades of Research on Thermal Contact, Gap, and Joint Resistance in Microelectronics, *M. Yovanovic, IEEE Trans. on components and packaging tech., vol. 28, 2005* *** **[FVV2011]**: Modellentwicklung für den kontaktdruckabhängigen ärmeübergang, *72.Jahrgang pp142-147, 2011*

Thermal Contact Conductance

- Thermal Contact Conductance: the thermal resistance between two solids that are pressed together
- Typical order of magnitude
 - Highly variant under conditions, especially contact pressure
 - Low contact pressure (<1 Mpa): $100 5000W/m^2K$
 - High contact pressure (>10MPa): 10 000 100 000W/m²K
- In high precision applications
 - Often vacuum
 - Small contact areas \rightarrow dominant in heat transfer path
 - Relatively high contact pressures can be achieved

Thermal Contact Conductance; [Incropera2006]

* [Incropera2006]: Fundamentals of heat and mass transfer, Incropera & DeWitt, 2006, 6th edition

Motivation

- Thermal Contact Conductance (TCC) in vacuum
 - High precision systems \rightarrow in vacuum
 - Dominant phenomenon in thermal modelling
- TCC has been addressed in literature
 - Overview presented in [Yovanovic2005]**
 - Multiple application areas
 - Spread in TCC is huge for only small deviations in test conditions
- Tools developed in literature
 - Are complex to use
 - Originate from different applications
- In this study:
 - Vacuum conditions
 - Test conditions similar to mechatronics applications

** **[Yovanovic2005]**: Four Decades of Research on Thermal Contact, Gap, and Joint Resistance in Microelectronics, *M. Yovanovic, IEEE Trans. on components and packaging tech., vol. 28, 2005*

Experimental Setup Some Pictures

Experimental Setup Some Pictures

Determined adjustment parameters

- The adjustment parameters $\alpha,\,\beta,\,R_{top}$ and R_{btm} are defined per sample pair

Sample combination	Contact area [mm ²]	Contact pres. [MPa]	Percentage of heat input used: α [–]	Percentage of contact area used: β [–]	R _{top} [K/W]	R _{btm} [K/W]
Al5 – Al5	50	0 – 25	1.0	1.0	0.19	0.18
Al6 – Al6	50	0 – 25	1.0	1.0	0.13	0.13
StSt – StSt	50	0 – 25	0.975	1.0	1.36	1.31
Ti5 – Ti5	50	0 - 5	0.90	1.0	3.27	3.17
Ti5 – Ti5	50	6 – 25	0.95	1.0	3.24	3.15
Al5 – Al5	10	25 – 100	1.0	0.95	0.56	0.56
StSt – StSt	10	25 – 100	0.90	0.95	4.14	4.13
Ti5 – Ti5	10	25 – 100	0.85	0.95	9.42	9.42
Al – StSt	50	0 – 25	1.0	1.0	Al5: 0.19 Al6: 0.13 StSt: 1.30	Al5: 0.18 Al6: 0.13 StSt: 1.30

Error Budget

- Types of erros:
 - Physical errors between measured quantity and actual quantity: heat flow, contact area, etc
 - Model errors between
- Magnitude of errors is determined via model and measurement equipment accuracy

F	Error contribution		
Error source	Large contacts	Small contacts	
Heat load uncertainty due to voltage and current uncertainty	6.0%	6.0%	
Heat flow uncertainty due to heat losses	10.0%	12%	
Contact area uncertainty	3.2%	5%	
NTC measurement error	2.5%	1.2%	
Additional error due to temperature measurement adjustment			
Heat flow uncertainty	0.8%	2.9%	
Misalignment	6.1%	12.1%	
Uncertainty in thermal conductance	12.3%	13.1%	
Uncertainty in emissivity samples	5.3%	15.1%	
Uncertainty in emissivity heater top	5.4%	16.0%	
Statistical sum:	20.2%	31.9%	

Results Surface roughness tests

- Surface roughness tests are employed with
 - Samples with a Ra of 1.6, 3.2 and 6.4 μm
 - Contact pressure: 0.1 25MPa
- Observations
 - At small contact pressures the TCC value can increase with surface roughness
 - Generally (at higher contact pressures) the TCC value drops for higher surface roughness and settles at some asymptote beyond 3µm
- Correlations with literature
 - Same qualitative behavior observed as in literature where rougher surfaces have a higher TCC at low contact pressures

Accuracy quantification Aluminum samples

- Accuracy test: measure h_{TCC} with glass plate between samples
- Theoretical HTC:
 - Glass plate properties: Thickness: t = 1.09mm, Conductivity: λ = 1.09W/mK
 - Contact Conductance AI to glass: $h_{con} = 10000 W/m^2 K$
 - Total effective HTC: $h_{eff} = \frac{1}{t/\lambda + 2/10000} = 833$ W/m²K
- Measurement
 - α determined model-based: 0.925
 - $-~\beta,\,R_{top}$ and R_{btm} as determined for Al samples
 - Contact pressure = 10MPa
 - Heater power: $Q_{th} = 1.02W$
 - dT measured: 22.63K
 - dT corrected: 22.28K
 - $-h_{TCC}$ measured: 847W/m²K
- Conclusion: Measured h_{TCC} in line with expected h_{TCC}

Accuracy quantification StSt samples

- Accuracy test: measure h_{TCC} with glass plate between samples
- Theoretical HTC:
 - Glass plate properties: Thickness: t = 1.09mm, Conductivity: λ = 1.09W/mK
 - Contact Conductance AI to glass: $h_{con} = 10000 W/m^2 K$
 - Total effective HTC: $h_{eff} = \frac{1}{t/\lambda + 2/10000} = 833$ W/m²K
- Measurement
 - α determined model-based: 0.925
 - $-~\beta,\,R_{top}$ and R_{btm} as determined for StSt samples
 - Contact pressure = 10MPa
 - Heater power: $Q_{th} = 0.961W$
 - dT measured: 25.60K
 - dT corrected: 23.23K
 - $-h_{TCC}$ measured: 765W/m²K
- Conclusion: Measured h_{TCC} 10% lower than expected h_{TCC}

